Trần Non Nước * , Trần Nhân Dũng , Võ Văn Song Toàn Dương Thị Hương Giang

* Tác giả liên hệTrần Non Nước

Abstract

Optimal selection of strains, fermentation conditions and substrates, which are very important for the successful production of cellulase by bacteria, were investigated in this study. A total of 37 anaerobic bacteria was screened on modified Delafield medium, in which Whatman filter paper powder was used as substrate. The results showed that the isolate VK52 adopted the highest cellulase productivity, illustrated by the largest haloes in diameter (20.5 mm) on Congo red-containing medium. The optimal conditions for cellulase production by VK52 were determined as 300C, pH 8 and 4-day-incubation on the medium supplemented with 0.4 % yeast extract. Paper and cellulose powder were the most favorable subtrates for cellulase production by the isolate VK52 in comparision with rice straw, sugarcane bagasse and rice husk.
Keywords: cellulase, endoglucanse, exoglucase, filter paper powder

Tóm tắt

Những yếu tố quan trọng trong việc sản xuất enzyme cellulase từ vi khuẩn như chọn dòng vi khuẩn, tối ưu hóa điều kiện nuôi cấy và chọn lọc nguồn cơ chất đã được tiến hành nghiên cứu. 37 dòng vi khuẩn kỵ khí được đem khảo sát hoạt tính trên môi trường Delafield cải tiến, với việc sử dụng bột giấy lọc Whatman làm cơ chất. Kết quả chọn dòng cho thấy vi khuẩn VK52 cho đường kính vòng tròn thủy phân lớn nhất (20,5 mm) trên môi trường nhuộm Congo-Red. Các điều kiện tối ưu cho việc sinh enzyme của vi khuẩn VK52 được xác định là tại pH 8, nhiệt độ 300C và 4 ngày nuôi với môi trường nuôi cấy được bổ sung hàm lượng dịch trích nấm men là 0,4%. Nghiên cứu cũng thể hiện rằng với điều kiện nuôi cấy như trên, bột giấy và bột cellulose là hai cơ chất tốt nhất cho sự sinh enzyme celluase từ vi khuẩn VK52 mặc dù hoạt tính enzyme cũng được thể hiện trên cơ chất bột cellulose, bột rơm, bã mía và vỏ trấu.
Từ khóa: Bột giấy, cellulase, endoglucanase, exoglucanase, vi khuẩn kỵ khí

Article Details

Tài liệu tham khảo

Abhaykumar, V.K. and H.C. Dube, 1992. Cellulases of Vibrio agar-liquefaciens isolated from sea mud. Microbiol. and Biotechl. (8): 313-315.

Abou-Taleb, A.A. Khadiga, W.A. Mashhoor, A. Sohair, M.S. Sharaf and H.M. Hoda, 2009. Nutritional and Environmental Factors Affecting Cellulase Production by Two Strains of Cellulolytic Bacilli. Australian Journal of Basic and Applied Sciences 3(3): 2429-2436.

Amtul, J. S., 1989. Purification and Characterization of Microbial Cellulolytic Enzymes. Ph.D. Thesis, Institute of Chemistry, University of the Punjab Lahore – 1, Pakistan, pp: 176.

Ariffin, H, N. Abdullah, M.S.U. Kalsom, Y. Shirai, M.A. Hassan, 2006. Production and characterization of cellulase by Bacillus pumilus EB3. Int. J. Eng. Tech. 3(1):47-53.

Azzaz, H.H., 2009. Effect of cellulolytic enzymes addition to diets on the productive performance of lactating goats. M.Sc. Thesis, Faculty of Agriculture, Cario University, Egypt, pp: 141.

Badhan, A.K., B.S. Chadha, K.G. Sonia, H.S. Saini and M.K. Bhat, 2004. Functionally diverse multiple xylanases of thermophilic fungus Myceliophthora sp. IMI 387099. Enz. and Microbiol. Technol. 35, 460–466.

Bahkali, A.H., 1996. Influence of various carbohydrates on xylanase production by V. tricorpus. Bioresource Technol. 33(3): 265 - 268.

Bhat, M.K., 2000. Cellulases and related enzymes in biotechnology. Biotech. Adv. 18: 355-383. 20

Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 72: 142-146.

Cherry, J.R. and A.L. Fidantsef, 2003. Directed evolution of industrial enzymes: an update. Curr. Opin. Biotechnol. 14: 438–443.

Fred, J. S., 1972. Cellulolytic activity of Thermomonospora curvata: Nutritional requirements for cellulase production. Journal of American Society for Microbiol. 24 (1): 77-82.

Howell, J.A. and M. Mangat, 1978. Enzyme deactivation during cellulose hydrolysis. Biotechnol. Bioeng. 20: 847-863.

Immanuel, G., R. Dhanusa, P. Prema and A. Palavesam, 2006. Effect of different growth parameters on endoglucanase enzyme activity by bacteria isolated from coir retting effluents of estuarine environment. Int.. J. Environ. Sci. Tech. 3(1): 25-34.

Jarvis, M., 2003. Cellulose stacks up. Nature 426: 611-612.

Kirk, O., T.V. Borchert and C.C. Fuglsang, 2002. Industrial enzyme applications. Curr. Opin. Biotechnol. 13: 345-351.

Knowles, J., P. Lethtovaara and T. Teeri, 1987. Cellulase families and their genes. Trends Biotechnol. 5: 255-261.

Krishna, C., 1999. Production of bacterial cellulases by solid state bioprocessing of banana wastes. Bioresour. Technol. 69, 231-239.

Laurent P., L. Buchon, J.F.G. Michel, N. Orange, 2000. Production of pectate lyases and cellulases by Chyrseomonas luteola strain MFCL0 depends on the growth temperature and the nature of the culture medium: evidence for two critical temperatures. App. and Env. Micro. 66 (4) 1538- 1543.

Lee B. H. and T. H. Blackburn, 1975. Cellulase Production by a Thermophilic Clostridium Species. App. Micro. 30 (3) 346-353.

Lynd L.R., P.J. Weimer, W.H. Zyl and I.S. Pretorius, 2002. Microbial cellulose ultilization: Fundamentals and Biotechnology. Microbiol. Mol. Biol. Rev 66: 506-577.

Nakamura K. and K. Kppamura, 1982. Isolation and identification of crystalline cellulose hydrolyzing bacterium and its enzymatic properties. J. Ferment. Technol. 60(4): 343 - 348.

Nelson, N. (1944). A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem. 153: 375–80.

Ray, A.K., A. Bairagi, K.S. Ghosh and S.K. Sen, 2007. Optimization of fermentation conditions for cellulase production by Bacillus subtilis CY5 and Bacillus circulans TP3 isolated from fish gut. Acta Ichthyol. Piscat. 37 (1): 47–53.

Ryckeboer J., J. Megaert, J. Coosemans, K. Deprins and J. Swings, 2003. Microbiological aspects of biowaste during composting in a monitored compost bin. Jour of Appl. Microbiol 94: 127 – 137.

Shin, C.S., J.P. Lee, P.S. Lee and S.C. Park, 2000. Enzyme production of Trichoderma reesi Rut C-30 on a various lingocellulosic substrates. Appl. Biochem and Biotechnol. 84-86: 237-245.

Teeri, T. T., 1997. Crystalline cellulose degradation: New insights into the function of cellobiohydrolases. Trend Biotechnol. 15: 160-167.

Tomme, P., R.A. Warren and N.R. Gilkes, 1995. Cellulose hydrolys is by bacteria and fungi. Adv. Microb. Physiol. 37: 1-81.

Wood, T.M. and V. Garica-Campayo, 1990. Enzymology of cellulose degradation. Biodegradation 1: 147-161.

Zhang, Y.H.P. and L.R. Lynd, 2004. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulose systems. Biotechnol. Bioeng. 88: 797-824.