Huỳnh Ngọc Thanh Tâm * , Trần Hữu Hậu , Trần Văn Bé Năm Nguyễn Thị Như Hạ

* Tác giả liên hệ (hnttam@ctu.edu.vn)

Abstract

Currently, bacteriocins produced by lactic acid bacteria are being considered as a potential alternative to antibiotics in aquaculture and preservatives in food. This research was conducted to select lactic acid bacteria strains capable of producing bacteriocin by agar well diffusion method to inhibit the growth of Escherichia coli and Staphylococcus aureus, isolated from whiteleg shrimp (Litopenaeus vannamei). A total of 21 lactic acid bacteria strains were isolated from shrimp farms in Kien Giang province. Among them, 9 strains showed the ability to produce bacteriocin that inhibited both E. coli (Gram-negative) and S. aureus (Gram-positive) bacteria, with inhibition zone diameters ranging from 4.0 to 9.7 mm. Notably, strain VT3 exhibited the strongest antibacterial activity and had a 99.4% sequence similarity to Weissella cibaria based on the 16S rRNA gene. The growth and bacteriocin production of strain VT3 were highest when cultured in MRS medium supplemented with 2% yeast extract, with antibacterial activity reaching 160 AU/mL and biomass production of 1.45 g/100 mL.

Keywords: Antibacteria, bacteriocin, lactic acid bacteria, Weissella cibaria

Tóm tắt

Hiện nay, bacteriocin được tổng hợp từ vi khuẩn lactic là hướng đi tiềm năng thay thế kháng sinh trong nuôi trồng thủy sản và chất bảo quản trong thực phẩm. Trong nghiên cứu, các chủng vi khuẩn lactic có khả năng sinh bacteriocin được tuyển chọn bằng phương pháp khuếch tán giếng thạch nhằm ức chế sự phát triển của Escherichia coliStaphylococcus aureus được phân lập từ tôm thẻ chân trắng (Litopenaeus vannamei). Tổng cộng 21 chủng vi khuẩn lactic đã được phân lập từ các trại nuôi tôm tại tỉnh Kiên Giang, trong đó 9 chủng thể hiện khả năng sinh bacteriocin ức chế cả hai loại vi khuẩn E. coli (Gram âm) và S. aureus (Gram dương), với đường kính vòng ức chế từ 4,0 đến 9,7 mm. Đáng chú ý, chủng VT3 cho thấy hoạt tính kháng khuẩn mạnh nhất và có độ tương đồng trình tự gen 16S rRNA đến 99,4% so với Weissella cibaria. Khả năng phát triển và sinh tổng hợp bacteriocin của chủng VT3 cao nhất khi được nuôi cấy trong môi trường MRS bổ sung 2% yeast extract, với hoạt tính kháng khuẩn 160 AU/mL và sinh khối 1,45 g/100 mL.

Từ khóa: Bacteriocin, kháng khuẩn, vi khuẩn lactic, Weissella cibaria

Article Details

Tài liệu tham khảo

Al-Juboory, Y. H. O., Al-Dulaimi, D. A. R. A., & Mahmood, A. E. (2023). Extraction and purification nisin from Lactobacillus lactis and determine the optimal conditions for its production and evaluation its effectiveness in food preservation. In IOP Conference Series: Earth and Environmental Science, 1262(6), 062032. https://doi.org/10.1088/1755-1315/1262/6/062032

Angadi, V., Ramkumar, C., Hiremath, J. P., & Prabha, R. (2021). Phenotypic identification of lactic isolates obtained from fermented Idli batter. International Journal of Current Microbiology and Applied Sciences, 10(3), 1718–1724. https://doi.org/10.20546/ijcmas.2021.1003.214

Axelsson, L. (2004). Lactic acid bacteria: Classification and physiology. In S. Salminen, A. von Wright, & A. Ouwehand (Eds.), Lactic acid bacteria: Microbiological and Functional aspects. Marcel Dekker, 1–66. https://doi.org/10.1201/9780824752033.ch1

Azim, A., Singh, N., Venkatesh, V., Verma, S., Agarwal, A., & Singh Sr, N. (2023). Weissella confusa causing vancomycin-resistant septicemia infection in a pediatric patient: A case report from a university teaching hospital in North India. Cureus, 15(4), e38292. https://doi.org/10.7759/cureus.3829

Björkroth, K. J., Schillinger, U., Geisen, R., Weiss, N., Hoste, B., Holzapfel, W. H., ... & Vandamme, P. (2002). Taxonomic study of Weissella confusa and description of Weissella cibaria sp. nov., detected in food and clinical samples. International Journal of Systematic and Evolutionary Microbiology, 52(1), 141-148. https://doi.org/10.1099/00207713-52-1-141

Bui, T. B. H., Balami, S., & Nguyen, T. P. (2022). Effect of Lactobacillus plantarum on growth performance, immune responses, and disease resistance of striped catfish (Pangasianodon hypophthalmus). Aquaculture, Aquarium, Conservation & Legislation, 15(1), 174-187.

Bustos, G., Moldes, A. B., Cruz, J. M., & Dominguez, J. M. (2005). Influence of the metabolism pathway on lactic acid production from hemicellulosic trimming vine shoots hydrolyzates using Lactobacillus pentosus. Biotechnology Progress, 21(3), 793-798. https://doi.org/10.1021/bp049603v

Daba, H., Pandian, S., Gosselin, J. F., Simard, R. E., Huang, J., & Lacroix, C. (1991). Detection and activity of a bacteriocin produced by Leuconostoc mesenteroides. Applied and Environmental Microbiology, 57(12), 3450-3455. https://doi.org/10.1128/aem.57.12.3450-3455.1991

Fugaban, J. I. I., Vazquez Bucheli, J. E., Park, Y. J., Suh, D. H., Jung, E. S., Franco, B. D. G. D. M., & Todorov, S. D. (2022). Antimicrobial properties of Pediococcus acidilactici and Pediococcus pentosaceus isolated from silage. Journal of Applied Microbiology, 132(1), 311-330. https://doi.org/10.1111/jam.15205

Goa, T., Beyene, G., Mekonnen, M., & Gorems, K. (2022). Isolation and characterization of lactic acid bacteria from fermented milk produced in Jimma Town, Southwest Ethiopia, and evaluation of their antimicrobial activity against selected pathogenic bacteria. International journal of food science, 1, 2076021. https://doi.org/10.1155/2022/2076021

Han, H. S., Yum, H., Cho, Y. D., & Kim, S. (2023). Improvement of halitosis by probiotic bacterium Weissella cibaria CMU: a randomized controlled trial. Frontiers in Microbiology, 14, 1108762. https://doi.org/10.3389/fmicb.2023.1108762

Huynh, G. T., Vu, H. N., Vu, V. U., Nguyen, H. N. U., & Pham, T. T. N. (2020). Characterization of potential probiotic Lactobacillus from whiteleg shrimp intestines for possible additives in pellet feeding. CTU Journal of Science, 56(Fisheries) 102-111. https://doi.org/10.22144/ctu.jsi.2020.012

Imade, E. E., Omonigho, S. E., Babalola, O. O., & Enagbonma, B. J. (2021). Lactic acid bacterial bacteriocins and their bioactive properties against food-associated antibiotic-resistant bacteria. Annals of Microbiology, 71, 1-14. https://doi.org/10.1186/s13213-021-01652-6

Kanagaraj, C., Muthuvel, P., & Ayyappadas, M. P. (2015). Screening of bacteriocin production and associated enzyme activity from Lactobacillus acidophilus. International Journal of Biotechnology and Bioengineering Research, 6, 13-18.

Kandler, O., & Weiss, N. (1986). Regular, Non-Sporing Gram-Positive Rods. In. Sneath, H. A., Mair, N. S., Sharpe, M. E., & Holt, J. G. (Eds.), Bergey’s Manual of Systematic Bacteriology. Williams and Wilkins, Baltimore, 1208-1234.

Kang, C. E., Park, Y. J., Kim, J. H., Lee, N. K., & Paik, H. D. (2023). Probiotic Weissella cibaria displays antibacterial and anti-biofilm effects against cavity-causing Streptococcus mutans. Microbial Pathogenesis, 180, 106151. https://doi.org/10.1016/j.micpath.2023.106151

Kim, D. H., Kang, M. S., Yeu, J. E., Lee, M. G., & Cho, J. W. (2020). Inhibitory effect of the probiotic bacteria, Weissella cibaria CMU on halitosis: a randomized placebo-controlled study. Journal of Korean Academy of Oral Health, 44(4), 246-252. https://doi.org/10.11149/jkaoh.2020.44.4.246

Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547-1549. https://doi.org/10.1093/molbev/msy096

Li, J., Ai, L., Xu, F., Hu, X., Yao, Y., & Wang, L. (2022). Structural characterization of exopolysaccharides from Weissella cibaria NC516. 11 in distiller grains and its improvement in gluten-free dough. International Journal of Biological Macromolecules, 199, 17-23. https://doi.org/10.1016/j.ijbiomac.2021.12.089

Ngo, T. P. D., Huynh, Y. L., & Huynh, X. P. (2011). Isolation and selection of lactic acid bacteria producing anti-bacterial substances. CTU Journal of Science, (19a), 176-184 (in Vietnamese).

Khoa, N. T. T. (2014). Isolation of Lactobacillus bacteria from several catfish species with the ability to inhibit Edwardsiella ictaluri, the causative agent of bacillary necrosis of Pangasius (Master’s thesis). Can Tho University (in Vietnamese).

Nguyen, V. L., Nguyen, N. N., Do, A. D., Nguyen, T. S., & Nguyen, Q. D. (2024). Exopolysaccharides from Weissella cibaria isolated from oats: isolation, characterisation and its application in improving the texture of set-type yogurt. International Journal of Food Science and Technology, 59(12), 9532-9546. https://doi.org/10.1111/ijfs.17603

Nguyen, V. T. & Nguyen, N. T. (2012). Isolation of Lactobacillus sp. inhibiting bacteria causing “red-sore disease” and “white spot in the internal organs” on Pangasianodon hypophthalmus. CTU Journal of Science, 23(a), 224-234 (in Vietnamese).

Pham, M. D., Tran, T. T. H., Chau, T. T., Cao, M. A., Hua, T. N., Tran, N. H., Tran, T. T. H., & Onoda, S. (2017). Effects of heat-killed Lactobacillus plantarum strain L-137 on larvae quality and growth performance of white leg shrimp (Litopenaeus vannamei) juveniles. IJSRP, 7(7), 41-48.

Ren, Y., Liu, W., & Zhang, H. (2015). Identification of coccoidal bacteria in traditional fermented milk products from Mongolia, and the fermentation properties of the predominant species, Streptococcus thermophilus. Korean Journal for Food Science of Animal Resources, 35(5), 683. https://doi.org/10.5851/kosfa.2015.35.5.683

Rossland, E., Langsrud, T., & Sorhaug, T. (2005). Influence of controlled lactic fermentation on growth and sporulation of Bacillus cereus in milk. International journal of food microbiology, 103(1), 69-77. https://doi.org/10.1016/j.ijfoodmicro.2004.11.027

Sanni, A. I., Onilude, A. A., Ogunbanwo, S. T., & Smith, S. I. (1999). Antagonistic activity of bacteriocin produced by Lactobacillus species from ogi, an indigenous fermented food. Journal of Basic Microbiology: An International Journal on Biochemistry, Physiology, Genetics, Morphology, and Ecology of Microorganisms, 39(3), 189-195. https://doi.org/10.1002/(SICI)1521-4028(199906)39:3<189::AID-JOBM189>3.0.CO;2-R

Tian, C., Wang, L., Liu, M., Liu, J., Qiu, M., & Chen, Y. (2024). Isolation and identification of chicken-derived lactic acid bacteria: in vitro probiotic properties and antagonistic effects against Salmonella pullorum, Staphylococcus aureus, and Escherichia coli. Microorganisms, 12(4), 795. https://doi.org/10.3390/microorganisms12040795

Verschuere, L., Heang, H., Criel, G., Sorgeloos, P., & Verstraete, W. (2000). Selected bacterial strains protect Artemia spp. from the pathogenic effects of Vibrio proteolyticus CW8T2. Applied and Environmental Microbiology, 66(3), 1139-1146. https://doi.org/10.1128/AEM.66.3.1139-1146.2000