Evaluation of methylene blue dye (MB) removal from aqueous solution using biochar synthesized from disposable bamboo chopsticks
Abstract
The textile wastewater is guilty of water pollution on a global scale. As a result, the study, investigation, and development of green and cheap materials for pollution removal are important and urgent. In this study, DT-NB biochar material from disposable bamboo chopsticks was prepared and applied to adsorb methylene blue dye (MB) in an aqueous solution. It was found that the synthesized DT-NB through the slow pyrolysis at 500oC followed by the ball milling process had a large surface area of 273.11 m2/g and complex pore structures to facilitate the adsorption of MB onto the adsorbent. At pH 10 and an initial MB concentration of 30 mg/L, DT-NB mass for MB removal is 0.3 g in 60 minutes of contact time. Experimental data were well fitted to the Langmuir monolayer adsorption model with the maximum adsorption capacity of 4.12 mg/g, and the kinetics of MB adsorption was described with the pseudo-second order model.
Tóm tắt
Nước thải dệt nhuộm đang là tác nhân gây ô nhiễm nghiêm trọng nguồn nước trên toàn thế giới. Vì thế, việc nghiên cứu, tìm kiếm và phát triển vật liệu xanh, rẻ tiền để loại bỏ phẩm màu là cần thiết và cấp bách. Trong nghiên cứu này, vật liệu than sinh học DT-NB từ đũa tre dùng một lần được điều chế và ứng dụng hấp phụ thuốc nhuộm xanh methylene (MB) trong nước. Kết quả nghiên cứu cho thấy, than DT-NB tạo thành từ nhiệt phân chậm ở 500oC và sau đó được nghiền bi có bề mặt riêng lớn (273,11 m2/g) với cấu trúc lỗ xốp phức tạp, tạo điều kiện thuận lợi cho quá trình hấp phụ MB. Ở pH 10 và nồng độ MB ban đầu 30 mg/L, liều lượng than cần dùng để loại bỏ MB là 0,3 g trong thời gian 60 phút. Dữ liệu thí nghiệm phù hợp với mô hình hấp phụ đơn lớp Langmuir với dung lượng hấp phụ cực đại đạt 4,12 mg/g; và mô hình động học biểu kiến bậc hai phù hợp để giải thích động học quá trình hấp phụ MB.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Ahmed, A., Bakar, M. S. A., Hamdani, R., Park, Y. K., Lam, S. S., Sukri, R. S., Hussain, M., Majeed, K., Phusunti, N., & Jamil, F. (2020), Valorization of underutilized waste biomass from invasive species to produce biochar for energy and other value-added applications. Environmental Research, 186, 109596.
https://doi.org/10.1016/j.envres.2020.109596
Al-Ghouti, M. A., & Da'ana, D. A. (2020), Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of Hazardous Materials, 393, 122383.
https://doi.org/10.1016/j.jhazmat.2020.122383
Amusat, S. O., Kebede, T. G., Dube, S., & Nindi, M. M. (2021). Ball-milling synthesis of biochar and biochar–based nanocomposites and prospects for removal of emerging contaminants: A review. Journal of Water Process Engineering, 41, 101993-102007. https://doi.org/10.1016/j.jwpe.2021.101993
Assimeddine, M., Abdennouri, M., Barka, N., Elmoubarki, R., & Sadiq, M. H. (2022). Natural Phosphates Characterization and Evaluation of their Removal Efficiency of Methylene Blue and Methyl Orange from Aqueous Media, Environment and Natural Resources Journal, 20, 29-41.
https://doi.org/10.32526/ennrj/20/202100147
Barka, N., Ouzaouit, K., Abdennouri, M., & Makhfouk, M. E. (2013). Dried prickly pear cactus (Opuntia ficus indica) cladodes as a low-cost and eco-friendly biosorbent for dyes removal from aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, 44, 52–60.
https://doi.org/10.1016/j.jtice.2012.09.007
Bella, H., & Bendaikha, H. (2022), Biochar from Empty Date Fruit Bunch as an Adsorbent to Remove Eriochrome Black T and Methylene Blue from Aqueous Solution. Applied Environmental Research, 44, 44-55.
https://doi.org/10.35762/AER.2022.44.2.4
Chan, L. S., Cheung, W. H., & McKay G. (2008). Adsorption of acid dyes by bamboo derived activated carbon, Desalination, 218, 304–312.
https://doi.org/10.1016/j.desal.2007.02.026
Chioma, A. O., Olubunmi O. A., Samson O. O, Gloria T. A., Abiodun E. A., & Clement O. F. (2023). Potential application and regeneration of bamboo biochar for wastewater treatment: A review. Advances in Bamboo Science, 2, 100012-100020.
https://doi.org/10.1016/j.bamboo.2022.100012
Cường, N. X. (2021). Nghiên cứu hấp phụ thuốc nhuộm methylene blue trong môi trường nước bằng than sinh học từ sinh khối cây mai dương. Tạp chí Khoa học Đại học Quốc gia Hà Nội: Các Khoa học Trái đất và Môi trường, 37(2), 43-54.
https://doi.org/10.25073/2588-1094/vnuees.4582
Darweesh, M. A., Elgendy , M. Y., Ayad, M. I., Ahmed, M. A., Elsayed, N. M. K., & Hammad, W. A. (2022). Adsorption isotherm, kinetic, and optimization studies for copper (II) removal from aqueous solutions by banana leaves and derived activated carbon. South African Journal of Chemical Engineering, 40, 10-20
https://doi.org/10.1016/j.sajce.2022.01.002
Dawood, S., Sen, T. K., & Phan, C. (2016). Adsorption removal of Methylene Blue (MB) dye from aqueous solution by bio-char prepared from Eucalyptus sheathiana bark: kinetic, equilibrium, mechanism, thermodynamic and process design. Desalination and Water Treatment, 57, 28964-28980.
https://doi.org/10.1080/19443994.2016.1188732
Elhamid, A. A., Emran, M., El-Sadek M., El-Shanshory, A. A., Soliman, H. M., Akl, M., & Rashad, M. (2020), Enhanced removal of cationic dye by eco-friendly activated biochar derived from rice straw, Applied Water Science, 10, 1-11.
https://doi.org/10.1007/s13201-019-1128-0
El-Khaiary, M. I., & Malash, G. F. (2011). Common data analysis errors in batch adsorption studies. Hydrometallurgy, 105, 314-320.
https://doi.org/10.1016/j.hydromet.2010.11.005
Guo, J. Z., Li, B., Liu, L., & Lv, K. (2014). Removal of methylene blue from aqueous solutions by chemically modified bamboo. Chemosphere, 111, 225-231.
https://doi.org/10.1016/j.chemosphere.2014.03.118
Hadjittofi, L., Prodromou, M., & Pashalidis, I. (2014). Activated biochar derived from cactus fibres – Preparation, characterization and application on Cu(II) removal from aqueous solutions. Bioresource Technology, 159, 460-464.
https://doi.org/10.1016/j.biortech.2014.03.073
Hafshejania, L. D., Hooshmanda, A., Naseria, A. A., Mohammadi, A. S., Abbasi, F., & Bhatnagar., A. (2016). Removal of Nitrate from Aqueous Solution by Modified Sugarcane Bagasse Biochar. Ecological Engineering, 95, 101-11.
https://doi.org/10.1016/j.ecoleng.2016.06.035.
Hiep, N. T., Thu, T. T. H., Quyen, L. T. T., Dong, P. D. D., Suong, T. T., Vu, T. P. (2022). Biochar Derived from Sesbania Sesban Plant as a Potential Low-Cost Adsorbent for Removal of Methylene Blue. Environment and Natural Resources Journal, 20(6), 611-620
https://doi.org/10.32526/ennrj/20/202200119
Ho, Y. S., & Wang, C. C. (2004). Pseudo-isotherms for the sorption of cadmium ion onto tree fern. Process Biochem, 39(6), 761-765.
https://doi.org/10.1016/S0032-9592(03)00184-5
Huang, W., Chen, J., & Zhang J. (2018). Adsorption Characteristics of Methylene Blue by Biochar Prepared Using Sheep, Rabbit and Pig Manure. Environmental Science and Pollution Research, 25(29), 29256-29266.
https://doi.org/10.1007/s11356-018-2906-1
Inglezakis, V. J., Balsamo, M., & Montagnaro, F. (2020), Liquid-solid mass transfer in adsorption systems-an overlooked resistance?. Industrial & Engineering Chemistry Research, 59, 22007-22016.
https://doi.org/10.1021/acs.iecr.0c05032
Jia, Y., Jin, Q., Li, Y., Sun, Y., Huo, J., & Zhao, X. (2015). Investigation of the adsorption behaviour of different types of dyes on MIL-100(Fe) and their removal from natural water. Analytical Methods, 7, 1463-1470.
https://doi.org/10.1039/C4AY02726D
Khan, M. D., Singh, A., Khan, M. Z., Tabraiz, S., & Sheikh, J. (2023). Current perspectives, recent advancements, and efficiencies of various dye-containing wastewater treatment technologies. Journal of Water Process Engineering, 53, 103579.
https://doi.org/10.1016/j.jwpe.2023.103579
Koo-amornpattana, W., Jonglertjunya, W., Phadungbut, P., Ratchahat, S., Kunthakudee, N., Chalermsinsuwan, B. & Hunsom, M. (2022). Valorization of spent disposable wooden chopstick as the CO2 adsorbent for a CO2/H2 mixed gas purification. Scientific Reports, 12, 6250.
https://doi.org/10.1038/s41598-022-10197-w
Lavita, J. M., Parushuram, N., & Sangappa, Y. (2022). Preparation, characterization, and methylene blue dye adsorption study of silk fibroin–graphene oxide nanocomposite. Environmental Science Advances, 1, 285-296
https://doi.org/10.1039/D1VA00047K
Li, Y., Dua, Q., Liu, T., Peng, X., Wang, J., Sun, J., Wang, Y., Wu, S., Wang, Z., Xia, Y., Xia, L. (2013). Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. Chemical Engineering Research and Design, 91, 361-368
https://doi.org/10.1016/j.cherd.2012.07.007
Li, Y., Shao, J., & Wang, X. (2014). Characterization of Modified Biochars Derived from Bamboo Pyrolysis and Their Utilization for Target Component (Furfural) Adsorption. Energy & Fuel, 28(8), 5119-5127.
https://doi.org/10.1021/ef500725c
Li, T. T., Tong, Z. H., Gao, B., Li, Y. C., Smyth A., & Bayabil H. K. (2019). Polyethyleneimine-modified biochar for enhanced phosphate adsorption. Environmental Science and Pollution Research, 27, 7420-7429.
https://doi.org/10.1007/s11356-019-07053-2
Lyu, H., Gao, B., He, F., Zimmerman, A. R., Ding, C., Huang, H., & Tan, J. (2018a). Effects of ball milling on the physicochemical and sorptive properties of biochar: Experimental observations and governing mechanisms. Environmental Pollution, 233, 54-63.
https://doi.org/10.1016/j.envpol.2017.10.037
Lyu, H., Gao, B., He, F., Zimmerman, A. R., Ding, C., Tang, J., & Crittenden, J. C. (2018b), Experimental and modeling investigations of ball-milled biochar for the removal of aqueous methylene blue. Chemical Engineering Journal, 335, 110-119.
https://doi.org/10.1016/j.cej.2017.10.130
Lyu, H., Xia, S., Tang, J., Zhang, Y., Gao, B., & Shen, B. (2020). Thiol-modified biochar synthesized by a facile ball-milling method for enhanced sorption of inorganic Hg2+ and organic CH3Hg+. Journal of Hazardous Materials, 384, 121357.
https://doi.org/10.1016/j.jhazmat.2019.121357
Mai, V. T., & Tuyên, T. V. (2016). Nghiên cứu khả năng xử lý amoni trong môi trường nước của than sinh học từ lõi ngô biến tính bằng H3PO4 và NaOH, Tạp chí Khoa học: Các Khoa học Trái đất và môi Trường, 32, 274-281.
https://js.vnu.edu.vn/EES/article/view/2779
Muhammad, B., Ihsanullah, I., Mansoor, U. H. S., Ambavaram, V. B. R., & Tejraj M. A. (2022). Recent advances in the removal of dyes from wastewater using low-cost adsorbents. Journal of Environmental Management, 321(1), 115981.
https://doi.org/10.1016/j.jenvman.2022.115981
Oladoye, P. O., Ajiboye, T. O., Omotola, E. O., Oyewola, O. O. (2020). Methylene blue dye: Toxicity and potential elimination technology from wastewater. Results in Enigeering, 16, 100678.
https://doi.org/10.1016/j.rineng.2022.100678
Qian, W. C., Luo, X. P., Wang, X., Guo, M., & Li, B. (2018). Removal of methylene blue from aqueous solution by modified bamboo hydrochar. Ecotoxicology and Environmental Safety, 157, 300-306.
https://doi.org/10.1016/j.ecoenv.2018.03.088
Rafatullah, M., Sulaiman, O., Hashim R., & Ahmad, A. (2010). Adsorption of methylene blue on low-cost adsorbents: a review. Journal of Hazardous Materials, 177, 70-80.
https://doi.org/10.1016/j.jhazmat.2009.12.047
Rathi, B. S., Kumar P. S., & Show, P. L. (2021). A review on effective removal of emerging contaminants from aquatic systems: Current trends and scope for further research. Journal of hazardous materials, 409, 124413.
https://doi.org/10.1016/j.jhazmat.2020.124413
Sakr, F., Alahiane, S., Sennaoui, A., Dinne, M., Bakas, I., & Assabbane, A. (2019). Removal of cationic dye (Methylene Blue) from aqueous solution by adsorption on two type of biomaterial of South Morocco. Materials Today: Proceedings, 22(1), 93-96. https://doi.org/10.1016/j.matpr.2019.08.101
Sâm, D. H., Sương, T. T., Hiệp, N. T., Khoa, T. A., & Vũ, T. P. (2023). Nghiên cứu khả năng hấp phụ xanh methylene của than sinh học sản xuất từ cành thanh long (Hylocereus Sp.). Tạp chí khoa học Đại học Cần Thơ, 59(5A), 72-78.
https://doi.org/10.22144/ctujos.2023.195
Shih, Y., Huang, C., & Chen, P. (2010), Biodegradable green composites reinforced by the fiber recycling from disposable chopsticks. Materials Science and Engineering A, 527, 1516-1521.
https://doi.org/10.1016/j.msea.2009.10.024
Silva, J. S. D., Rosa ,M. P. D., Beck, P. H., Peres, C., Dotto, G. L., Kessler, F., & Grasel, F. S. (2018). Preparation of an alternative adsorbent from Acacia Mearnsii wastes through acetosolv method and its application for dye removal. Journal of Cleaner Production, 180, 386-394.
https://doi.org/10.1016/j.jclepro.2018.01.201
Subratti, A., Vidal, J. L., Lalgee, L. J., Kerton, F. M., & Jalsa N. K. (2021), Preparation and characterization of biochar derived from the fruit seed of Cedrela odorata L and evaluation of its adsorption capacity with methylene blue. Sustainable Chemistry and Pharmacy, 21, 100421.
https://doi.org/10.1016/j.scp.2021.100421
Suma, Y., Pasukphun, N., & Eaktasang, N. (2021), Adsorption of methylene blue by low-cost biochar derived from elephant dung, Applied Environmental Research, 43, 34-44.
https://doi.org/10.35762/AER.2021.43.3.3
Thanh, L. H. V., Hạnh, C. L. N., Giao, Đ. H., Quyên, T. T. B., Dung, L. T. N. & Quyên, P. T. H. (2021). Đánh giá khả năng loại bỏ methylene blue của vật liệu hấp phụ được điều chế từ mụn dừa bằng phương pháp hummers cải tiến. Tạp chí Khoa học Trường Đại học Cần Thơ, 58(2A), 89-101.
https://doi.org/10.22144/ctu.jvn.2022.039
Tkaczyk, A., Mitrowska, K., & Posyniak, A. (2020), Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Science of the Total Environment, 717, 137222.
https://doi.org/10.1016/j.scitotenv.2020.137222
Trường, N. N., & Nhã, T. T. (2023). Nghiên cứu khả năng xử lý màu methylene blue trong nước bằng vật liệu sinh học điều chế từ cây ngọc kỳ lân. Tạp chí Khoa học - Đại học Thủ Dầu Một, 3(64), 60-65.
https://doi.org/10.37550/tdmu.VJS/2023.03.437
Vasconcellos, J. F. V., Neto, A. J. S., & Santana C. C. (2003), An inverse mass transfer problem in solid-liquid adsorption systems. Inverse Problems in Science and Engineering, 11, 391-408.
https://doi.org/10.1080/1068276031000098018
Wang, S., Huang, H., Liu, J., & Deng, Y. (2022). Micro-meso porous biocarbons derived from a typical biopolymer with superior adsorption capacity for methylene blue dye and high-performance supercapacitors. Journal of Electroanalytical Chemistry, 924, 116877. https://doi.org/10.1016/j.jelechem.2022.116877
Wei, X., Wang, X., Gao, B., Zou, W., & Dong, L. (2020). Facile Ball-Milling Synthesis of CuO/Biochar Nanocomposites for Efficient Removal of Reactive Red 120, ACS Omega, 5(11), 5748-5755.
https://dx.doi.org/10.1021/acsomega.9b03787
Wijitkosuma, S., & Sriburib, T. (2023). Aromaticity, polarity, and longevity of biochar derived from disposable bamboo chopsticks waste for environmental application. Heliyon, 9, e19831.
https://doi.org/10.1016/j.heliyon.2023.e19831
Xiang, W., Zhang, X., Chen, K., Fang, J., He, F., Hu, X., Tsang, D. C. W., Ok, Y. S., & Gao, B. (2020). Enhanced adsorption performance and governing mechanisms of ball-milled biochar for the removal of volatile organic compounds (VOCs), Chemical Engineering Journal, 385, 123842.
https://doi.org/10.1016/j.cej.2019.123842
Xu, X., Zheng, Y., Gao, B., & Cao, X. (2019). N-doped biochar synthesized by a facile ball-milling method for enhanced sorption of CO2 and reactive red. Chemical Engineering Journal, 368, 564-572.
https://doi.org/10.1016/j.cej.2019.02.165
Zhang, Y., Zheng, Y., Yang, Y., Huang, J., Zimmerman, A. R., Chen, H., Hu, X., & Gao, B. (2021), Mechanisms and adsorption capacities of hydrogen peroxide modified ball milled biochar for the removal of methylene blue from aqueous solutions, Bioresource Technology, 337, 125432.
https://doi.org/10.1016/j.biortech.2021.125432
Zhao, L., Cao, X., Mašek, O., & Zimmerman A. (2019). Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. Journal of Hazardous Materials, 256-257, 1-9.
https://doi.org/10.1016/j.jhazmat.2013.04.015
Zhuang, Z., Lan Wang, Jingchun Tang. (2021). Efficient removal of volatile organic compound by ball-milled biochars from different preparing conditions. Journal of Hazardous Materials, 406, 124676.
https://doi.org/10.1016/j.jhazmat.2020.124676