Adsorption capacity of Methyl Orange using chitosan hydrogel beads extracted from Penaeus monodon shrimp shell waste
Abstract
In this study, chitosan was extracted from Penaeus monodon shrimp shell waste and was used as a bio-sorbent to remove Methyl Orange (MO) dye in aqueous solution. Batch adsorption experiments were carried out to evaluate the influence of solution pH, chitosan dosage, contact time and initial MO concentration on the adsorption process. The study was conducted with varying contact time from 1 to 720 min, adsorbent dose from 0.1 to 3 g, adsorbate concentration from 10 to 200 mg/L, and pH from 3 to 10. The results showed that adsorption of MO by chitosan reached equilibrium after 240 min. The maximum adsorption capacity of MO calculated by Langmuir model was 23.1 mg/g obtained at room temperature (25°C), pH of 3, chitosan dose of 0.2 g and MO concentration of 50 mg/L. The kinetics of the adsorption process followed the pseudo-second-order kinetic model with the correlation coefficient R2 of 0.96. The Langmuir isotherm adsorption model described well the MO adsorption process, with R2 of 0.97. The study demonstrated that the chitosan can be extracted from shrimp shells simply and can be effectively used to remove Methyl Orange anionic dye in aqueous solution.
Tóm tắt
Trong nghiên cứu này, chitosan chiết xuất từ vỏ tôm sú Penaeus monodon được sử dụng làm chất hấp phụ sinh học để loại bỏ hợp chất màu methyl orange (MO) trong dung dịch. Nghiên cứu được tiến hành với thời gian tiếp xúc thay đổi từ 1 đến 720 phút, liều lượng chitosan từ 0,1 đến 3 g, nồng độ MO từ 10 đến 200 mg/L, và pH từ 3 đến 10. Kết quả cho thấy khả năng hấp phụ MO của chitosan đạt cân bằng sau 240 phút. Khả năng hấp phụ tối đa của MO tính toán bằng mô hình Langmuir là 23,10 mg/g thu được ở nhiệt độ phòng (25°C), pH = 3, khối lượng chitosan 0,2 g và nồng độ MO 50 mg/L. Động học của quá trình hấp phụ tuân theo mô hình động học biểu kiến bậc hai với R2 là 0,96. Mô hình hấp phụ đẳng nhiệt Langmuir mô tả tốt quá trình hấp phụ MO với R2 là 0,97. Kết quả chứng minh vỏ tôm sú có thể được chiết xuất thành chitosan có giá trị như một chất hấp phụ để loại bỏ thuốc nhuộm MO khỏi dung dịch.
Article Details
References
Alakhras, F., Ouachtak, H., Alhajri, E., Rehman, R., Al-Mazaideh, G., Anastopoulos, I., & Lima, E. C. (2022). Adsorptive removal of cationic rhodamine B dye from aqueous solutions using chitosan-derived schiff base. Separation Science and Technology, 57(4), 542-554. https://doi.org/10.1080/01496395.2021.1931326
Alguacil, F. J., & Lopez, F. A (2021). Adsorption processes in the removal of organic dyes from wastewaters: Very Recent Developments. In I. A. Moujdin, & J. K. Summers (Eds.), Promising techniques for wastewater treatment and water quality assessment (pp. 17–32). IntechOpen. https://doi.org/10.5772/intechopen.94164
Azimvand, J., Didehban, K. H., & Mirshokraie, S. A. (2018). Safranin-O removal from aqueous solutions using lignin nanoparticle-g-polyacrylic acid adsorbent: Synthesis, properties, and application. Adsorption Science & Technology, 36(7-8). https://doi.org/10.1177/0263617418777836, 0(0) 1–19
Bai, Y. N., Wang, X. N., Zhang, F., Wu, J., Zhang, W., Lu, Y. Z., ... & Zeng, R. J. (2020). High-rate anaerobic decolorization of methyl orange from synthetic azo dye wastewater in a methane-based hollow fiber membrane bioreactor. Journal of hazardous materials, 388, 121753. https://doi.org/10.1016/j.jhazmat.2019.121753
Begum, S., Yuhana, N. Y., Saleh, N. M., Kamarudin, N. H. N., & Sulong, A. B. (2021). Review of chitosan composite as a heavy metal adsorbent: Material preparation and properties. Carbohydrate polymers, 259, 117613. https://doi.org/10.1016/j.carbpol.2021.117613
Bhavani, K., Begum, E. R. A., Selvakumar, S., & Shenbagarathai, R. (2016). Chitosan-a low cost adsorbent for electroplating waste water treatment. Journal of Bioremediation and Biodegradation, 7(3). doi:10.4172/2155-6199.1000346
Crini, A., & Badot, M. P., (2008). Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Progress in Polymer Science, 33(4),
399-447. https://doi.org/10.1016/j.progpolymsci.2007.11.001
Dima, J. B., Sequeiros, C., & Zaritzky, N. (2017). Chitosan from marine crustaceans: production, characterization and applications. Biological activities and application of marine polysaccharides, 39-56. doi: 10.5772/65258
Enescu, D,. & Olteanu, C. E. (2008). Functionalized chitosan and its use in pharmaceutical, biomedical, and biotechnological research. Chemical Engineering Communications, 195(10), 1269-1291. https://doi.org/10.1080/00986440801958808
Febi, I. F., Nadya, I. Y., Mai, A., & Amri, S. (2020). Adsorption study of methylene blue and methyl orange using green shell (Perna Viridis). Journal of Sciences and Data Analysis, 1(1), 92-97. https://doi.org/10.20885/EKSAKTA.vol1.iss1.art14
Forgacs, E Crestile, T., & Oros, G., (2004). Removal of synthetic dyes from waste water. A review. Environmental International, 30(7), pp. 953-971. https://doi.org/10.1016/j.envint.2004.02.001
Gadekar, M. R., & Ahammed, M. M. (2020). Use of water treatment residuals for colour removal from real textile dye wastewater. Applied Water Science, 10, 1-8. https://doi.org/10.1007/s13201-020-01245-9
Hammood, Z. A., Chyad, T. F., & Al-Saedi, R. (2021). Adsorption performance of dyes over zeolite for textile wastewater treatment. Ecological Chemistry and Engineering, 28, 329-337.
https://doi.org/10.2478/eces-2021-0022
Haque, M. M., Haque, M. A., Mosharaf, M. K., & Marcus, P. K. (2021). Decolorization, degradation and detoxification of carcinogenic sulfonated azo dye methyl orange by newly developed biofilm consortia. Saudi Journal of Biological Sciences, 28(1), 793-804. https://doi.org/10.1016/j.sjbs.2020.11.012
Jiménez-Gómez, C. P., & Cecilia, J. A. (2020). Chitosan: a natural biopolymer with a wide and varied range of applications. Molecules, 25(17), 3981.
https://doi.org/10.3390/molecules25173981
Kannan, N., & Sundaram, M. M., (2001). Kinetics and mechanism of removal of methylene blue by adsorption onvarious carbons—A comparative study. Dyes and Pigments, 51(1), 25-40. https://doi.org/10.1016/S0143-7208(01)00056-0
Kant, R. (2012). Textile dyeing industry an environmental hazard. Natural Science, 4(1), 22–26. doi:10.4236/ns.2012.41004
Kausar, A., Iqbal, M., Javed, A., Aftab, K., Bhatti, H. N., & Nouren, S. (2018). Dyes adsorption using clay and modified clay: a review. Journal of Molecular Liquids, 256, 395-407. https://doi.org/10.1016/j.molliq.2018.02.034
Kheddo, A., Rhyman, L., Elzagheid, M. I., Jeetah, P., & Ramasami, P. (2020). Adsorption of synthetic dyed wastewater using activated carbon from rice husk. SN Applied Sciences, 2, 1-14. https://doi.org/10.1007/s42452-020-03922-5
Labidi, A., Salaberria, A. M., Fernandes, S. C., Labidi, J., & Abderrabba, M. (2019). Functional chitosan derivative and chitin as decolorization materials for methylene blue and methyl orange from aqueous solution. Materials, 12(3), 361. doi: 10.3390/ma12030361
Lellis, B., Fávaro-Polonio, C.Z., Pamphile, J.A., & Polonio, J.C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3, 275-290. https://doi.org/10.1016/j.biori.2019.09.001
Lim, C., Hwang, D. S., & Lee, D. W. (2021). Intermolecular interactions of chitosan: Degree of acetylation and molecular weight. Carbohydrate Polymers, 259, 117782. https://doi.org/10.1016/j.carbpol.2021.117782
Lukum, A., Paramata, Y., Botutihe, D. N., Akume, J., Sukamto, K., & Paramata, A. R. (2020). Development of Bioadsorbent Chitosan from Shrimp Shell Waste to Mercury Absorption Efficiency. In IOP Conference Series, Earth and Environmental Science (Vol. 589, No. 1, p. 012018). IOP Publishing.
Malviya, A., Jaspal, D., Sharma, P., & Dubey, A. (2015). Isothermal mathematical modeling for decolorizing water-A comparative approach. Sustainable Environment Research, 25, 53-58.
Marszałek, J., & Żyłła, R. (2021). Recovery of Water from Textile Dyeing Using Membrane Filtration Processes. Processes, 9(10), 1833. https://doi.org/10.3390/pr9101833
Mittal, J. (2020). Permissible synthetic food dyes in India. Resonance, 25, 567–577. https://doi.org/10.1007/s12045-020-0970-6
Nandanwar, P. M., Saravanan, D., Bakshe, P., & Jugade, R. M. (2022). Chitosan entrapped microporous activated carbon composite as a supersorbent for remazol brilliant blue R. Materials Advances, 3(13), 5488-5496. doi: 10.1039/D2MA00508E
Ogugbue, C. J., & Sawidis, T. (2011). Bioremediation and detoxification of synthetic wastewater containing triarylmethane dyes by Aeromonas hydrophila isolated from industrial effluent. Biotechnology research international, 11, 967925. https://doi.org/10.4061/2011/967925
Omer, A. M., Dey, R., Eltaweil, A. S., Abd El-Monaem, E. M., & Ziora, Z. M. (2022). Insights into recent advances of chitosan-based adsorbents for sustainable removal of heavy metals and anions. Arabian Journal of Chemistry, 15(2), 103543. https://doi.org/10.1016/j.arabjc.2021.103543
Pai, S., Kini, M.S., Mythili, R., & Selvaraj, R. (2022). Adsorptive removal of AB113 dye using green synthesized hydroxyapatite/magnetite nanocomposite. Environmental Research, 210, 112951. https://doi.org/10.1016/j.envres.2022.112951
Queiroz, M. F., Teodosio Melo, K. R., Sabry, D. A., Sassaki, G. L., & Rocha, H. A. O. (2014). Does the use of chitosan contribute to oxalate kidney stone formation?. Marine drugs, 13(1), 141-158. https://doi.org/10.3390/md13010141
Radwan, M. A., Farrag, S. A., Abu-Elamayem, M. M., & Ahmed, N. S. (2012). Extraction, characterization, and nematicidal activity of chitin and chitosan derived from shrimp shell wastes. Biology and Fertility of Soils, 48(4), 463-468.
https://doi.org/10.1007/s00374-011-0632-7
Rahangdale, D., Archana, G., & Kumar, A. (2016). Molecularly imprinted chitosan-based adsorbents for the removal of salicylic acid and its molecular modeling to study the influence of intramolecular hydrogen bonding of template on molecular recognition of molecularly imprinted polymer. Adsorption Science & Technology, 34(7-8), 405-425.
doi: 10.1177/0263617416659490
Raiyaan, G. I. D., Khalith, S. B. M., Sheriff, M. A., & Arunachalam, K. D. (2021). Bio-adsorption of methylene blue dye using chitosan-extracted from Fenneropenaeus indicus shrimp shell waste. Journal of Aquaculture & Marine Biology, 10(4), 146‒150. https://doi.org/10.15406/jamb.2021.10.00316
Ramaraju, B., Manoj Kumar Reddy, P., & Subrahmanyam, C. (2014). Low cost adsorbents from agricultural waste for removal of dyes. Environmental Progress & Sustainable Energy, 33(1), 38-46. https://doi.org/10.1002/ep.11742
Rápó, E., & Tonk, S. (2021). Factors affecting synthetic dye adsorption; desorption studies: a review of results from the last five years (2017–2021). Molecules, 26(17), 5419. https://doi.org/10.3390/molecules26175419
Rinaudo, M. (2006). Chitin and chitosan: properties and applications. Progress in Polymer Science, 31(7), 603–632. https://doi.org/10.1016/j.progpolymsci.2006.06.001
Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresource technology, 77, 247-255. https://doi.org/10.1016/S0960-8524(00)00080-8
Saha, T. K., Bhoumik, N. C., Karmaker, S., Ahmed, M. G., Ichikawa, H., & Fukumori, Y. (2010). Adsorption of methyl orange onto chitosan from aqueous solution. Journal of Water Resource and Protection, 2(10), 2969. https://doi.org/10.4236/jwarp.2010.210107
Saini, R. D. (2017). Textile organic dyes: polluting effects and elimination methods from textile waste water. International Journal of Chemical Engineering Research, 9(1), 121-136.
Sakkayawong, N., Thiravetyan, P., & Nakbanpote, W. (2005). Adsorption mechanism of synthetic reactive dye wastewater by chitosan. Journal of colloid and interface science, 286(1), 36-42. https://doi.org/10.1016/j.jcis.2005.01.020
Salman, J. M., Amrin, A. R., Hassan, F. M., & Jouda, S. A. (2015). Removal of congo red dye from aqueous solution by using natural materials. Mesopotamia Environmental Journal, 1(3), 82-89. https://doi.org/10.1002/ep.11742
Samoila, P., Humelnicu, A. C., Ignat, M., Cojocaru, C., & Harabagiu, V. (2019). Chitin and Chitosan for Water Purification. In L. A.Broek, C. G. Boeriu & C. V. Stevens (Eds.), Chitin and chitosan: Properties and applications (pp. 429-460). John Wiley & Sons Ltd. https://doi.org/10.1002/9781119450467.ch17
Shepherd, R., Reader, S., & Falshaw A. Chitosan functional properties. Glycoconjugate Journal, 14(4), 535–542.
Soares, P. A., Silva, T. F., Manenti, D. R., Souza, S., Boaventura, R. A., & Vilar, V. J. (2014). Insights into real cotton-textile dyeing wastewater treatment using solar advanced oxidation processes. Environmental Science and Pollution Research, 21, 932-945. https://doi.org/10.1007/s11356-013-1934-0
Sowmya, S. R., Madhu, G. M., Sankannavar, R., & Yerragolla, S. (2021). Adsorption using chitosan and nano zerovalent iron composite material for sustainable water treatment. Materials Research Express, 8(2), 024001. https://doi.org/10.1088/2053-1591/abdb4d
Sutar, S., Patil, P., & Jadhav, J. (2022). Recent advances in biochar technology for textile dyes wastewater remediation: A review. Environmental Research, 209, 112841. https://doi.org/10.1016/j.envres.2022.112841
Tehrani-Bagha, A. R., Mahmoodi, N. M., & Menger, F. M. (2010). Degradation of a persistent organic dye from colored textile wastewater by ozonation. Desalination, 260(1-3), 34-38. https://doi.org/10.1016/j.desal.2010.05.004
Thirunavukkarasu, N., & Shanmugam, A. (2009). Extraction of chitin and chitosan from mud crab Scylla tranquebarica (Fabricius, 1798). International Journal on Applied Bioengineering, 4(2), 31–33.
Uddin, M. J., Ampiaw, R. E., & Lee, W. (2021). Adsorptive removal of dyes from wastewater using a metal-organic framework: A review. Chemosphere, 284, 131314. https://doi.org/10.1016/j.chemosphere.2021.131314
Wang, Y., Wohlert, J., Bergenstråhle-Wohlert, M., Tu, Y., & Ågren, H. (2015). Molecular mechanisms for the adhesion of chitin and chitosan to montmorillonite clay. RSC Advances, 5(67), 54580-54588. https://doi.org/10.1039/C5RA06424D.
Wang, J., Yao, J., Wang, L., Xue, Q., Hu, Z., & Pan, B. (2020). Multivariate optimization of the pulse electrochemical oxidation for treating recalcitrant dye wastewater. Separation and Purification Technology, 230, 115851. https://doi.org/10.1016/j.seppur.2019.115851
WWF (2019). Guidelines for greening the textile sector in Viet Nam, 63.
Yaseen, D. A. & Scholz, M. (2019). Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. International journal of environmental science and technology, 16(2), 1193-122. https://doi.org/10.1007/s13762-018-2130-z
Yusuf, M. (2019). Synthetic dyes: a threat to the environment and water ecosystem. In M. Shabbir (Ed.), Textiles and clothing (pp. 11-26), Scrivener Publishing LLC. https://doi.org/10.1002/9781119526599.ch2
Zhou, Y., Gao, B., Zimmerman, A.R., Fang, J., Sun, Y., Cao, X. (2013). Sorption of heavy metals on chitosan-modified biochars and its biological effects. Chemical Engineering Journal, 231, 512-518.
https://doi.org/10.1016/j.cej.2013.07.036
Zia, Q., Tabassum, M., Gong, H., & Li, J. (2019). A review on chitosan for the removal of heavy metals ions. Journal of Fiber Bioengineering and Informatics, 12(3), 103-128. https://doi.org/10.3993/jfbim00301