Van Pham Dan Thuy * , Dang Huynh Giao , Pham Van Toan and Doan Van Hong Thien

* Corresponding author (vpdthuy@ctu.edu.vn)

Abstract

The purpose of this study was to prepare ZnO nanofibers based on carbon with precursors of polyvinyl pyrrolidone (PVP) and zinc nitrate (Zn(NO3)2) by an electrospinning method. The electrospinning parameters of PVP/Zn(NO3)2 were investigated, including the concentration of PVP, amount of Zn(NO3)2, applied voltage, and flow rate. The morphology of electrospun nanofibers was observed under a scanning electron microscope (SEM). At the optimum condition, the electrospun PVP/Zn(NO3)2 nanofibers were calcinated in nitrogen at 500°C for 1 hour to covert  ZnO nanoparticles based on carbon fibers. The morphology and size of ZnO nanoparticles based on carbon nanofibers were determined by a transmission electron microscope (TEM). The formation of ZnO crystals in the ZnO/carbon fibers was determined by Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Thus, ZnO nanoparticles based on carbon fibers were succesfully prepared.
Keywords: Carbon, electrospinning, nanofibers, zinc oxide

Tóm tắt

Nghiên cứu này nhằm tổng hợp nano ZnO trên nền sợi carbon từ tiền thân sợi nano PVP/Zn(NO3)2 bằng phương pháp quay điện hóa. Các yếu tố ảnh hưởng đến quá trình tạo sợi nano PVP/Zn(NO3)2 bằng electrospinning đã được khảo sát: nồng độ polyvinyl pyrrolydone (PVP), hàm lượng muối Zn(NO3)2, hiệu điện thế và lưu lượng dòng dung dịch. Từ đó, chọn mẫu sợi phù hợp thông qua quan sát bằng kính hiển vi điện tử quét (SEM) và tiến hành nung sợi trong điều kiện khí N2 ở 500℃ trong 1 giờ tạo hạt nano ZnO trên nền sợi carbon. Kính hiển vi điện tử truyền qua (TEM) được sử dụng để xác định hình dáng và kích thước hạt nano ZnO trên nền sợi carbon. Sự có mặt của tinh thể ZnO trong cấu trúc sợi carbon được xác định bằng phổ hồng ngoại FT-IR và nhiễu xạ tia X (XRD). Vì vậy, nano ZnO trên nền sợi carbon đã được điều chế thành công.
Từ khóa: carbon, quay điện hóa, sợi nano, ZnO

Article Details

References

Bhardwaj, N. and Kundu, S. C., 2010. Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28 (3): 325-347.

Greiner, A. and Wendorff, J. H., 2007. Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angewandte Chemie International Edition, 46 (30): 5670-5703.

Guo, J., Song, Y., Chen, D. and Jiao, X., 2010. Fabrication of ZnO nanofibers by electrospinning and electrical properties of a single nanofiber. Journal of dispersion science and technology, 31 (5): 684-689.

Li, D. and Xia, Y., 2004. Electrospinning of nanofibers: reinventing the wheel? Advanced Materials, 16 (14): 1151-1170.

Li, X. B., Ma, S. Y., Li, F. R., Zhao, Y. X., Liu, X. B. and Lu, F. P., 2019. Method for synthesizing ZnO of different nanostructures by electrospinning and study of their gas sensing properties. Modern Physics Letters B, 33 (25): 1950297.

Lu, X., Zhang, W., Zhao, Q., Wang, L. and Wang, C., 2006. Luminescent polyvinylpyrrolidone/ZnO hybrid nanofibers membrane prepared by electrospinning. e-Polymers, 6 (1): 033.

Mali, S. S., Kim, H., Jang, W. Y., Park, H. S., Patil, P. S. and Hong, C. K., 2013. Novel synthesis and characterization of mesoporous ZnO nanofibers by electrospinning Technique. ACS Sustainable Chemistry & Engineering, 1 (9): 1207-1213.

Mu, J., Shao, C., Guo, Z., Zhang, Z., Zhang, M., Zhang, P., Chen, B. and Liu, Y., 2011. High photocatalytic activity of ZnO−carbon nanofiber heteroarchitectures. ACS Applied Materials & Interfaces, 3 (2): 590-596.

Pakravan, M., Heuzey, M. C. and Ajji, A., 2011. A fundamental study of chitosan/PEO electrospinning. Polymer, 52 (21): 4813-4824.

Park, J. A., Moon, J., Lee, S. J., Lim, S. C. and Zyung, T., 2009. Fabrication and characterization of ZnO nanofibers by electrospinning. Current Applied Physics, 9 (3, Supplement): S210-S212.

Pascariu, P., Homocianu, M., Cojocaru, C., Samoila, P., Airinei, A. and Suchea, M., 2019. Preparation of La doped ZnO ceramic nanostructures by electrospinning–calcination method: Effect of La3+doping on optical and photocatalytic properties. Applied Surface Science, 476 16-27.

Ren, H., Ding, Y., Jiang, Y., Xu, F., Long, Z. and Zhang, P., 2009. Synthesis and properties of ZnO nanofibers prepared by electrospinning. Journal of Sol-Gel Science and Technology, 52 (2): 287-290.

Saidin, N. U., Choo, T. F., Kok, K. Y., Yusof, M. R. and Ng, I. K., 2017. Fabrication and characterization of ZnO nanofibers by electrospinning. Trans Tech Publ.

Selvaraj, B., Balaguru Rayappan, J. B. and Jayanth Babu, K., 2020. Influence of calcination temperature on the growth of electrospun multi-junction ZnO nanowires: A room temperature ammonia sensor. Materials Science in Semiconductor Processing, 112 105006.

Sill, T. J. and von Recum, H. A., 2008. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials, 29 (13): 1989-2006.

Wu, H., Lin, D., Zhang, R. and Pan, W., 2008. ZnO nanofiber field-effect transistor assembled by electrospinning. Journal of the American Ceramic Society, 91 (2): 656-659.

Yi, G. C., Wang, C. and Park, W. I., 2005. ZnO nanorods: synthesis, characterization and applications. Semiconductor Science and Technology, 20 (4): S22-S34.

Zhang, Z., Li, X., Wang, C., Wei, L., Liu, Y. and Shao, C., 2009. ZnO hollow nanofibers: fabrication from facile single capillary electrospinning and applications in gas sensors. The Journal of Physical Chemistry C, 113 (45): 19397-19403.