Nguyễn Nhật Minh Phương * , Lê Thị Ngọc Thảo , Lâm Khánh Duy , Nguyễn Thị Huỳnh Như , Nguyễn Ngọc Ân Mai Thanh Hải

* Tác giả liên hệ (nnmphuong@ctu.edu.vn)

Abstract

The study produced a powder and stabilize the bioactivity of phenolic compounds extracted from Nu Hoang guava leaves. The foam mat drying method was applied using albumin (2, 5, 10, and 15%) as a foaming agent and carboxymethyl cellulose (CMC) (0.5, 1.0, and 1.5%) as a stabilizer. Additionally, several mathematical drying models were employed to predict drying curves at 50, 60, and 70°C, and to determine the most suitable model. The results showed that the suitable conditions for powder production were 10% albumin, 0.5% CMC, and a drying temperature of 60°C. The total phenolic content reached 2.56±0.03 mg gallic acid equivalents (GAE)/g dry matter (DM), and the antioxidant activity, based on DPPH free radical scavenging capacity, reached 12.42±0.03 mg trolox equivalents (TE)/g DM. The Page model was identified as the most accurate for predicting the drying behavior, with an R² value of 0.9996. The powder derived from Nu Hoang guava leaves was rich in phenolic compounds and exhibited significant antioxidant activity, suggesting its potential application as a functional food supplement to support antioxidant activity and human health.

Keywords: Albumin, antioxidant activity, carboxymethyl cellulose, foam mat drying, Nu Hoang guava leaves, phenolic

Tóm tắt

Nghiên cứu được thực hiện nhằm sản xuất bột khô và ổn định hoạt tính sinh học của các hợp chất phenolic từ cao chiết lá ổi Nữ Hoàng. Phương pháp sấy bọt xốp được sử dụng trong nghiên cứu với albumin (2, 5, 10 và 15%) làm chất tạo bọt và carboxymethyl cellulose (CMC) (0,5, 1,0 và 1,5%) làm chất ổn định bọt. Đồng thời, việc áp dụng một số mô hình toán nhằm dự đoán đường cong sấy, tìm ra được nhiệt độ sấy (50, 60 và 70°C) và mô hình sấy thích hợp. Kết quả cho thấy nồng độ albumin 10%, CMC 0,5% và nhiệt độ sấy 60°C là phù hợp. Tổng hàm lượng phenolic thu nhận đạt 2,56±0,03 mg đương lượng gallic acid (GAE)/g căn bản khô (CBK) và hoạt tính chống oxy hóa DPPH đạt 12,42±0,03 mg đương lượng trolox (TE)/g CBK. Mô hình Page là phù hợp để dự đoán quá trình thoát ẩm trong khi sấy với R2 là 0,9996. Bột khô từ lá ổi Nữ Hoàng giàu phenolic và hoạt tính chống oxy hóa có thể sử dụng như phụ gia thực phẩm làm tăng khả năng chống oxy hóa cho thực phẩm và hỗ trợ sức khỏe.

Từ khóa: Albumin, carboxymethyl cellulose, hoạt tính chống oxy hóa, lá ổi Nữ Hoàng, phenolic, sấy bọt xốp

Article Details

Tài liệu tham khảo

Anderson, R. A., Conway, H. F., Pfeifer, V. F., & Griffin, E. L. (1969). Gelatinization of corn grits by roll and extrusion cooking. Cereal Science Today, 14, 1-3. https://doi.org/10.1002/star.19700220408

Asokapandian, S., Venkatachalam, S., Swamy, G. J., & Kuppusamy, K. (2016). Optimization of foaming properties and foam mat drying of muskmelon using soy protein. Journal of Food Process Engineering, 39(6), 692-701. https://doi.org/10.1111/jfpe.12261

Belal, Md., Hossain, M. A., Mitra, S., & Zzaman, W. (2023). Effect of foaming agent concentration and foam stabilizer on the foaming capacity and physical properties of tomato powder at dried at different temperature. Journal of Microbiology, Biotechnology and Food Sciences, 12(4), 4741. https://doi.org/10.55251/jmbfs.4741

Bruce, D. M. (1985). Exposed-layer barley drying: three models fitted to new data up to 150℃. Journal of Agricultural Engineering Research, 32(4), 337-348.
https://doi.org/10.1016/0021-8634(85)90098-8

Cao, A. T. N., & Mac, T. T. H. (2019). Study on the effect of spray drying method on the quality of noni powder. Da Nang University Journal of Science and Technology, 17(11), 16-21 (in Vietnamese).

Chong, C. H., Law, C. L., Cloke, M., Hii, C. L., Abdullah, L. C., & Daud, W. R. W. (2008). Drying kinetics and product quality of dried Chempedak. Journal of Food Engineering, 88(4), 522-527. https://doi.org/10.1016/j.jfoodeng.2008.03.013

Correia, P. M. R., Guiné, R. P. F., Correia, A. C., Gonçalves, F., Brito, M. F. S., & Ribeiro, J. R. P. (2017). Physical, chemical and sensorial properties of kiwi as influenced by drying conditions. Agricultural Engineering International, 19(3), 203-212.

Diógenes, A. d. M. G., de Figueirêdo, R. M. F., Queiroz, A. J. d. M., Ferreira, J. P. d. L., Silva, W. P. d., Gomes, J. P., Santos, F. S. d., Castro, D. S. d., Oliveira, M. N. d., Santos, D. d. C., de Andrade, R. O., & de Lima, A. R. C. (2022). Mathematical Models to Describe the Foam Mat Drying Process of Cumbeba Pulp (Tacinga inamoena) and Product Quality. Foods, 11, 1751. https://doi.org/10.3390/foods11121751

Doymaz, I. (2004). Drying kinetics of white mulberry. Journal of Food Engineering, 61(3), 341-346.
https://doi.org/10.1016/S0260-8774(03)00138-9

Falade, K. O., & Omojola, B. S. (2010). Effect of processing methods on physical, chemical, rheological and sensory properties of Okra (Abelmoschus esculentus). Journal of Food and Bioprocess Technology, 3(3), 387-394. https://doi.org/10.1007/s11947-008-0126-2

Franco, T. S., Perussello, C. A., Ellendersen, L. N., & Masson, M. L. (2016). Effects of foam mat drying on physicochemical and microstructural properties of yacon juice powder. LWI-Food Science and Technology, 66, 503-513. https://doi.org/10.1016/j.lwt.2015.11.009

Frokjaer, S., & Otzen, D. E. (2005). Protein drug stability: a formulation challenge. Nature Reviews Drug Discovery, 4(4), 298-306. https://doi.org/10.1038/nrd1695

Gálvez, A. V., Fuentes, I. Q., Uribe, E., Monzo, J. M., Pasten, A., & Mondaca, R. L. (2019). Bioactive compounds and physicochemical characterization of dried apricot (Prunus armeniaca L.) as affected by different drying temperatures. CYTA-Journal of Food, 17(1), 297-306. https://doi.org/10.1080.19476337.2019.1577918

Henderson, S. M., & Pabis, S. (1961). Grain drying theory I: Temperature effect on drying coefficient. Journal of Agricultural Engineering Research, 7, 85-89.

Ho, H. T. N., & Nguyen, T. M. (2021). Influence of air temperature on the vacuum drying kinetics of black cherry tomatoes (Solanum lycopersicum cv. OG). Can Tho University Journal of Science, 57(1), 107-115 (in Vietnamese). https://doi.org/10.22144/ctu.jvn.2021.015

Ho, V. B., Nguyen, D. X., & Nguyen, T. A. (2015). Optimization of polyphenol extraction from guava leaves by response surface methodology. Journal of Science and Development, 13(7), 1144-1152 (in Vietnamese).

Hong, H. V., Nguyen, T. M., Tran, G. N., Ngo, T. V., & Vo, M. Q. (2024). Effect of foaming agent and drying temperature on drying rate and quality of foam-mat dried papaya powder. The Journal of Microbiology, Biotechnology and Food Sciences, 13(6), 10725. https://doi.org/10.55251/jmbfs.10725

Jafari, S. M., Ghalenoei, M. G., & Dehnad, D. (2017). Influence of spray drying on water solubility index, apparent density, and anthocyanin content of pomegranate juice juice powder. Powder Technology, 311, 59-65. https://doi.org/10.1016/j.powtec.2017.01.070

Kadam, D. M., & Balasubramanian, S. (2011). Foam mat drying of tomato juice. Journal of Food Processing and Preservation, 35(4), 488-495. https://doi.org/10.1111/j.1745-4549.2010.00492.x

Karim, A. A., & Wai, C. C. (1999). Characteristics of foam prepared from starfruit (Averrhoa carambola L.) puree by using methyl cellulose. Food Hydrocolloids, 13(3), 203-210. https://doi.org/10.1016/S0268-005X(98)00086-1

Kingsly, A. R. P., & Singh, D. B. (2007). Drying kinetics of pomegranate arils. Journal of Food Engineering, 79(2), 741-744. https://doi.org/10.1016/j.jfoodeng.2006.02.033

Koca, N., Karadeniz, F., & Burdurlu, H. S. (2007). Effect of pH on chlorophyll degradation and colour loss in blanched green peas. Food Chemistry, 100(2), 609-615. https://doi.org/10.1016/j.foodchem.2005.09.079

Kumar, M., Tomar, M., Amarowicz, R., Saurabh, V., Nair, M. S., Maheshwari, C., Sasi, M., Prajapati, U., Hasan, M., Singh, S., Changan, S., Prajapat, R. K., Berwal, M. K., & Satankar, V. (2021). Guava (Psidium guajava L.) leaves: nutritional composition, phytochemical profile, and health-promoting bioactivities. Foods, 10(4), 752. https://doi.org/10.3390/foods10040752

Kutz, M. (2019). Food drying and evaporation processing operations. In W. L. Kerr (Eds.), Handbook of farm, dairy and food machinery engineering (pp. 353-387). Academic Press. https://doi.org/10.1016/B978-0-12-814803-7.00014-2

Lau, K. L., & Dickinson, E. (2005). Instability and structural change in an aerated system containing egg albumen and invert sugar. Food Hydrocolloids, 19(1), 111-121. https://doi.org/10.1016/j.foodhyd.2004.04.020

Lee, S., & Kim, D. (2021). The role of polysaccharide in foam formation and stability. Journal of Agricultural and Food Chemistry, 69(10), 2980-2988.

McClements, D. J. (2015). Food Emulsions: Principles, Practice, and Techniques. CRC Press. https://doi.org/10.1201/9781420039436

Naufalin, R., Erminawati, Wicaksono, R., Febryani, A. T., & Latifasari, N. (2021). Antioxidant activity of kecombrang preserving powder using foam mat drying method. In IOP Conference Series: Earth and Environmental Science, 746(1), 012017.
https://doi.org/10.1088/1755-1315/746/1/012017

Nguyen, P. N. M., Le, T. T., Vissenaekens, H., Gonzales, B., Camp, J. V., Smagghe, G., & Raes, K. (2019). In vitro antioxidant activity and phenolic profiles of tropical fruit by‐products. International Journal of Food Science and Technology, 54(4), 1169-1178. https://doi.org/10.1111/ijfs.14093

Nguyen, T. M., Vo, T. Q., Nguyen, T. N., Tran, G. N, Vo, M. Q., & Ngo, T. V. (2022). Optimization of mulberry extract foam-mat drying process parameters. Molecules, 27(23), 8570. https://doi.org/10.3390/molecules27238570

Page, G. E. (1949). Factors influencing the maximum rates of air drying shelled corn in thin layers (M.Sc. thesis). Department of Mechanical Engineering, Purdue University, Purdue, USA.

Pashazadeh, H., Redha, A. A., Hassan, A. M. A., & Koca, I. (2024). Optimizing the drying conditions of date plum (Diospyros lotus L.) to conserve its phenolic content and antioxidants for preparing a highly bioaccessible polyphenol‑rich tea. Biomass Conversion and Biorefnery, 15, 9931-9939. https://doi.org/10.1007/s13399-024-05683-2

Raharitsifa, N., Genovese, D., & Ratti, C. (2006). Characterization of apple juice foams for foam-mat drying prepared with egg white protein and methylcellulose. Journal of Food Science, 71(3), 142-151.
https://doi.org/10.1111/j.1365-2621.2006.tb15627.x

Rajkumar, P., Kailappan, Viswanathan, R., & Raghavan, G. S. V. (2007). Drying characteristics of foamed alphonso mango pulp in a continuous type foam mat dryer. Journal of Food Engineering, 79(4), 1452-1459. https://doi.org/10.1016/j.jfoodeng.2006.04.027

Saeed, I. E., Sopian, K., & Zainol Abidin, Z. B. (2006). Drying kinetics of Roselle (Hibiscus sabdariffa L.): dried in constant temperature and humidity chamber. Seminar Penyelidikan Siswazah Fakulti Kejuruteraan, 143-148. https://www.researchgate.net/publication/353051302

Shaari, N. A., Sulaiman, R., Rahman, R. A., & Bakar, J. (2017). Production of pineapple fruit (Ananas comosus) powder using foam mat drying: Effect of whipping time and egg albumen concentration. Journal of Food Processing and Preservation, 42(1), 13467. https://doi.org/10.1111/jfpp.13467

Smith, J., & Johnson, A. (2020). Influence of protein concentration on foam properties. Journal of Food Science, 85(2), 345-352.

Sucipto, S., Tarigan, J. G. T. B., & Kumalaningsih, S. (2022). Optimazation of temperature and drying time of lemongrass and lime juice to produce antioxidant-rich instant powder. IOP Conference Series: Earth and Environmental Science, 1204(1), 01272. https://doi.org/10.1088/1755-1315/1024/1/012072

Tavares, I. M. C., Castilhos, M. B. M., Mauro, M. A., Ramos, A. M., Souza, R. T., Gómez-Alonso, S., Gomes, E., Da-Silva, R., Hermosín-Gutiérrez., & Lago-Vanzela, E. S. (2019). BRS Violeta (BRS Rúbea× IAC 1398-21) grape juice powder produced by foam mat drying. Part I: Effect of drying temperature on phenolic compounds and antioxidant activity. Food Chemistry, 298, 124971. https://doi.org/10.1016/j.foodchem.2019.124971

Truong, T. Q., Phung, L. T. T., Nguyen, T. T. P., & Nguyen, K. D. (2021). The effects of drying temperature on the content of polyphenol compounds, carotenoids, chlorophyll pigmented and antioxidant activity of the “rau cang cua” (Peperomia pellucida L.) collected in Tien Giang Province. HCMCOUJS-Engineering and Technology, 16(1), 25-33 (in Vietnamese). https://doi.org/10.46223/HCMCOUJS.tech.vi.16.1.1891.2021

Ung, T. M. A., Chau, N. T. T., Nguyen, H. T. (2022). Study on production of fruit powder from thailand jackfruit (artocarpus heterophyllus Lam.) by foam mat drying. Journal of Nutrition & Food, 18(3+4), 26-36 (in Vietnamese). https://doi.org/10.56283/1859-0381/288

Varhan, E., Elmas, F., & Koc, M. (2019). Foam mat drying of fig fruit: Optimization of foam composition and physicochemical properties of fig powder. Journal of Food Process Engineering, 42(4), 13022. https://doi.org/10.1111/jfpe.13022

Walsh, D. J., Russell, K., & FitzGerald, R. J. (2008). Stabilisation of sodium caseinate hydrolysate foams. Food Research International, 41(1), 43-52.
https://doi.org/10.1016/j.foodres.2007.09.003

Sifat, S. A. D., Trisha, A. T., Huda, N., Zzaman, W., & Julmohammad, N. (2021). Response surface approach to optimize the conditions of foam mat drying of plum in relation to the physical-chemical and antioxidant properties of plum powder. International Journal of Food Science, 1, 3681807.
https://doi.org/10.1155/2021/3681807.