Tổng hợp và tính chất quang của bột huỳnh quang đỏ BaMgAl10O17: Cr3+, Mn4+ ứng dụng trong chiếu sáng rắn
Abstract
The red-emitting phosphor BaMgAl₁₀O₁₇: Cr³⁺, Mn⁴⁺ was successfully synthesized using the co-precipitation method. The results show that the material strongly absorbs at a wavelength of 480 nm and emits in a broad spectral range from 630 nm to 730 nm, with three emission peaks at 660 nm, 692 nm, and 719 nm. The optimal doping concentrations were determined to be 0.7 mol% Cr³⁺ and 0.8 mol% Mn⁴⁺, with a sintering temperature of 1200°C for 4 hours. The incorporation of Mn⁴⁺ and Cr³⁺ ions into BaMgAl₁₀O₁₇ enhances the luminescent centers, leading to a higher emission intensity and an expanded spectral range. These results indicate that the phosphor has potential applications in agricultural lighting LEDs.
Tóm tắt
Bột huỳnh quang BaMgAl₁₀O₁₇: Cr³⁺, Mn⁴⁺ phát xạ đỏ được chế tạo thành công bằng phương pháp đồng kết tủa. Kết quả cho thấy vật liệu hấp thụ mạnh bước sóng 480 nm và phát xạ trong vùng phổ rộng từ 630 nm đến 730 nm ứng với ba đỉnh phát xạ tại 660 nm, 692 nm và 719 nm. Nồng độ pha tạp tối ưu là 0,7% mol Cr3+và 0,8% mol Mn4+, nhiệt độ nung thiêu kết tại 1200℃ trong 4 giờ. Việc pha tạp ion Mn⁴⁺ và Cr³⁺ vào BaMgAl₁₀O₁₇ làm tăng các tâm phát quang giúp phổ phát xạ có cường độ mạnh và vùng phổ mở rộng. Kết quả cho thấy bột huỳnh quang có tiềm năng ứng dụng cho LED chiếu sáng trong nông nghiệp.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Tài liệu tham khảo
Adachi, S. (2018). Photoluminescence spectra and modeling analyses of Mn4+ -activated fluoride phosphors. Journal of Luminescence, 197, 119-130. doi:https://doi.org/10.1016/j.jlumin.2018.01.016
Blasse, G., & Dirksen, G. J. (1986). Luminescence and crystal structure of LiNbGeO5. Journal of Solid State Chemistry, 65(2), 283-286. https://doi.org/10.1016/0022-4596(86)90065-4
Cai, P., Wang, X., & Seo, H. J. (2018). Excitation power dependent optical temperature behaviors in Mn4+ doped oxyfluoride Na2WO2F4. Physical Chemistry Chemical Physics, 20(3), 2028-2035. doi:https://doi.org/10.1039/C7CP07123J
Caiut, J., Floch, N., Messaddeq, Y., Lima, O. J. D., Rocha, L. A., Ciuffi, K. J., ... & Ribeiro, S. J. (2019). Cr3+ doped Al2O3 obtained by non-hydrolytic sol-gel methodology. Journal of the Brazilian Chemical Society, 30, 744-751. doi:http://dx.doi.org/10.21577/0103-5053.20180195
Cao, R., Luo, W., Xu, H., Luo, Z., Hu, Q., Fu, T., & Peng, D. (2016). Luminescence property and emission enhancement of YbAlO3: Mn4+ red phosphor by Mg2+ or Li+ ions. Optical Materials, 53, 169-173. doi:https://doi.org/10.1016/j.optmat.2016.01.034
Du, M., Tang, F., Long, J., Ma, C., Yuan, X., Zhang, J., ... & Cao, Y. (2016). Optical and thermal behaviors of high efficient K2TiF6: Mn4+ red phosphor prepared by modified two-step co-precipitation method. Materials Research Bulletin, 83, 316-323. doi:https://doi.org/10.1016/J.MATERRESBULL.2016.05.011
Han, B., Liu, B., Zhang, J., & Dai, Y. (2019). K3YB6O12: Sm3+: A novel orange-red emitting phosphor for white light emitting diodes. Optik, 179, 346-350. doi:https://doi.org/10.1016/j.ijleo.2018.10.221
Howe, B., & Diaz, A. L. (2004). Characterization of host-lattice emission and energy transfer in BaMgAl10O17: Eu2+. Journal of luminescence, 109(1), 51-59. doi:http://doi.org/10.1016/j.jlumin.2004.01.019
Huang, X., Liang, J., Li, B., Sun, L., & Lin, J. (2018). High-efficiency and thermally stable far-red-emitting NaLaMgWO6: Mn4+ phosphors for indoor plant growth light-emitting diodes. Optics letters, 43(14), 3305-3308. doi:https://doi.org/10.1364/OL.43.003305
Jang, M. K., Cho, Y. S., & Huh, Y. D. (2020). Preparation of red-emitting BaSiF6: Mn4+ phosphors for three-band white LEDs. Optical Materials, 101, 109734. doi:http://doi.org/10.1016/j.optmat.2020.109734
Jeet, S., & Pandey, O. P. (2020). Enhanced photoluminescence intensity of blue-light-emitting BaMgAl10O17: Eu2+ phosphor with Dy3+ co-doping. Journal of Materials Science: Materials in Electronics, 31, 1116-1125. doi:https://doi.org/10.1007/s10854-019-02623-z
Kostyukov, A., Baronskiy, M., Rastorguev, A., Snytnikov, V., Zhuzhgov, A., & Ishchenko, A. (2016). Photoluminescence of Cr3+ in nanostructured Al2O3 synthesized by evaporation using a continuous wave CO2 laser. RSC Advances, 6(3), 2072-2078. doi:http://doi.org/10.1039/c5ra19455e
Le, T. H., Nguyen, T., Nguyen, V. Q., Cao, X. T., Pham, H. V., Dao, X. V., ... & Pham, T. H. (2018). Effect of doping concentration and sintering temperature on structure and photoluminescence properties of blue/red emitting bi-phase Eu3+/Eu2+-doped Sr5(PO4)3Cl/Sr3(PO4)2 phosphors. Materials Research Express, 5(7), 076516. doi:http://doi.org/10.1088/2053-1591/aacf3b
Li, K., Lian, H., & Van Deun, R. (2018). A novel deep red-emitting phosphor KMgLaTeO6: Mn4+ with high thermal stability and quantum yield for w-LEDs: structure, site occupancy and photoluminescence properties. Dalton Transactions, 47(8), 2501-2505. doi:https://doi.org/10.1039/C7DT04811D
Nguyen, T. K. C., Nguyen, T. T., Nguyen, T. K. L., & Nguyen, D. H. (2018). Red Emission of SrAl2O4: Mn4+ Phosphor for Warm White Light-Emitting Diodes. Journal of Electronic Materials, 47(8), 4571-4587. doi: https://doi.10.1007 / s11664-018-6320-8
Nguyen, T. H., Nguyen, T., Tung, Tran. D., Do, Q. T., Dang, D. A., Tran, T. D., ... & Pham, T. H. (2020). Photoluminescent properties of red-emitting phosphor BaMgAl10O17: Cr3+ for plant growth LEDs. Optical Materials, 108, 110207. doi:https://doi.org/10.1016/j.optmat.2020.110207
Nguyen, Tu., Bui, V. H., Do, Q. Trung., Duong, A. T., Dang, M. T., Nguyen, D. H., ... & Pham, T. H. (2019). Surface oxygen vacancies of ZnO: a facile fabrication method and their contribution to the photoluminescence. Journal of Alloys and Compounds, 791, 722-729. doi:https://doi.org/10.1016/j.jallcom.2019.03.395
Patterson, A. L. (1939). The Scherrer formula for X-ray particle size determination. Physical review, 56(10), 978. doi: https://doi.org/10.1103/PhysRev.56.978
Perrotta, A., & Smith, J. V. (1968). The crystal structure of BaAl2O4. Bulletin de Minéralogie, 91(1), 85-87. doi:https://doi.org/10.3406/bulmi.1968.6190
Ronda, C. R., Jüstel, T., & Nikol, H. (1998). Rare earth phosphors: fundamentals and applications. Journal of Alloys and Compounds, 275, 669-676. doi:https://doi.org/10.1016/S0925-8388(98)00416-2
Sai, Q., Xia, C., Rao, H., Xu, X., Zhou, G., & Xu, P. (2011). Mn, Cr-co-doped MgAl2O4 phosphors for white LEDs. Journal of Luminescence, 131(11), 2359-2364. doi:http://doi.org/10.1016/j.jlumin.2011.05.046
Shur, M. S., & Zukauskas, R. (2005). Solid-state lighting: toward superior illumination. Proceedings of the IEEE, 93(10), 1691-1703. doi:https://doi.org/10.1109/JPROC.2005.853537
Singh, V., Chakradhar, R. P. S., Rao, J. L., Al-Shamery, K., Haase, M., & Jho, Y. D. (2012). Electron paramagnetic resonance and photoluminescence properties of α-Al2O3: Cr3+ phosphors. Applied Physics B, 107, 489-495. doi:https://doi.org/10.1007/s00340-012-4993-x
Srivastava, A. M., & Brik, M. G. (2012). The dependence of 10 Dq crystal field parameter for Mn4+ (3d3 configuration) and the magnitude of 7F1 level splitting for Eu3+ (4f6 configuration) on pyrochlore compositions. Optical Materials, 35(2), 196-200. doi:https://doi.org/10.1016/j.optmat.2012.07.026
Sun, Q., Wang, S., Devakumar, B., Sun, L., Liang, J., & Huang, X. (2019). Synthesis, crystal structure, and photoluminescence characteristics of high efficiency deep red emitting Ba2GdTaO6: Mn4+ phosphors. ACS Omega, 4(8), 13474-13480. doi:https://doi.org/10.1021/acsomega.9b01787
Taniguchi, M., & Lindsey, J. S. (2021). Absorption and fluorescence spectral database of chlorophylls and analogues. Photochemistry and Photobiology, 97(1), 136-165. https://onlinelibrary.wiley.com/doi/am-pdf/10.1111/php.13319