Đánh giá khả năng cung cấp oxy hòa tan vào trong nước thải bằng ống venturi
Abstract
This study was conducted to assess the potential of the venturi tube for dissolved oxygen supply into the wastewater. The experiments were carried out by two independent aeration types, including a venturi two nozzle-tube and air compressor-porous air stone systems. DO concentration was measured over time in the water tank and theoretical oxygen transfer rate was calculated. After 240 minutes of operation, the venturi tube-ejector model resulted in a DO concentration from nearly 0 mg/L up to over 8.1 mg/L at the central of the tank and 7.3 mg/L at the surrounding measured points, which is higher than that of the air compressor-porous air stone. In addition, the oxygen transmission coefficient Kla20max reaches 4.23 and (SOTR-the standard oxygen transfer rate)max was 1.1x10-2 kgO2/h of using the venturi device to suck the air and supply it to water through a nozzle. This study shows that the venturi two nozzle-tube system was better in supplying dissolved oxygen compared to the air compressor-porous air stone system in wastewater.
Tóm tắt
Nghiên cứu này được thực hiện nhằm mục tiêu đánh giá khả năng cung cấp oxy hòa tan của ống venturi vào trong môi trường nước thải. Thí nghiệm được thực hiện để đánh giá hai kiểu sục khí hoạt động độc lập gồm ống venturi kết hợp hai vòi phun và máy thổi khí nén qua đá sủi bọt. Nồng độ oxy hòa tan trong nước được đánh giá liên tục theo thời gian và tỷ lệ truyền khối oxy vào trong nước được tính toán. Sau 240 phút vận hành hệ thống, kết quả thí nghiệm cho thấy mô hình ống venturi-vòi phun cho giá trị DO từ xấp xỉ 0 mg/L trước khi sục khí lên đến đạt 8,1 mg/L tại vị trí trung tâm bể và 7,3 mg/L ở vị trí đo xung quanh sau thời gian sục khí, cao hơn so với hệ thống khí nén-đá bọt khoảng 1,0 mg/L. Bên cạnh đó, hệ số truyền oxy Kla20max đạt 4,23 và tốc độ truyền oxy tiêu chuẩn SOTR là 1.1x10-2 kgO2/h. Kết quả nghiên cứu cho thấy hệ thống ống venturi-vòi phun hoạt động tốt hơn trong việc cung cấp oxy hòa tan so với hệ thống cấp khí nén qua đá sủi trong môi trường nước bị ô nhiễm.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Tài liệu tham khảo
Abadie, T., Awali, S. M. M., Brennan, B., Briciu-Burghina, C., Tajparast, M., Passos, T. M., Durkan, J., Holland, L., Lawler, J., Nolan, K., Quilty, B., Fitzsimons, L., Regan, F., & Delauré, Y. (2022). Oxygen transfer of microbubbles clounds in aqueous solutions – Application to wastewater. Chemical Engineering Science, 257, 117693. https://doi.org/10.1016/j.ces.2022.117693
Agarwal, K., Trivedi, M., & Nirmalkar, N. (2022). Does salting – out effect nucleate nanobubbles in water: Spontaneous nucleation?. Ultrasonics Sonochemistry, 82, 105860.
https://doi.org/10.1016/j.ultsonch.2021.105860.
Atkinson, A.J., Apul, O.G., Schneider, O., Garcia-Segura, S., & Westerhoff, P. (2019). Nanobubble technologies offer opportunities to improve water treatment. Acc. Chem. Res. 52(5), 1196 –1205.
https://doi.org/10.1021/acs.accounts.8b00606
Dange, A., & Warkhedkar, R. (2023). An experimental study of venturi aeration system. Materials Today: Proceedings, 72, 615–621. https://doi.org/10.1016/j.matpr.2022.08.155.
Favvas, E., Kyzas, G. Z., Eleni K. Efthimiadou, E. K., & Athanasios Ch Mitropoulos, A. Ch. (2021). Bulk nanobubbles, generation methods and potential applications. Current Opinion in Colloid & Interface Science, 54, 101455.
https://doi.org/10.1016/j.cocis.2021.101455.
Hamad, F. A., Pun, K., Alessio, B., Najim, S. A., Ganesan, P. B., & Hughes, D. (2023). Experimental measurements on the microbubble characteristics and dissolved oxygen (DO) in water using single and twin – Venturi type microbubble generators. Chemical Engineering Science 280, 118994. https://doi.org/10.1016/j.ces.2023.118994
Jiang, L. M., Chen, L., Zhou, Z., Sun, D., Li, Y., Zhang, M., Liu, Y., Du, S., Chen, G., & Yao, J. (2020). Fouling characterization and aeration performance recovery of fine - pore diffusers operated for 10 years in a full-scale wastewater treatment plant. Bioresource Technology, 307, 123197.
https://doi.org/10.1016/j.biortech.2020.123197.
Lee, J. (2020). The baseline mass transfer coefficient: Water and Wastewater aeration systems (1st ed). Cambridge Scholars Publishing.
Li, H., Zhang, Q., Zeng, M., Cao, J., Zhao, Q., & Hao, L. (2023). Insights into gas flow behavior in venturi aerator by CFD-PBM model and verification of its efficiency in sludge reduction through O3 aeration. Journal of Water Process Engineering, 54, 103960.
https://doi.org/10.1016/j.jwpe.2023.103960.
Movahed, S. M. A., & Sarmah, A. K. (2021). Global trends and characteristics of nano- and micro-bubbles research in environmental engineering over the past two decades: A scientometric analysis. Science of the Total Environment, 785, 147362.
https://doi.org/10.1016/j.scitotenv.2021.147362.
Rameshkumar, C., Senthilkumar, G., Subalakshmi, R., & Gogoi, R. (2019). Generation and characterization of nanobubbles by ionization method for wastewater treatment. Desalination and Water Treatment, 164, 98 – 101. doi:10.5004/dwt.2019.24389.
Ramiro Escudero, G., José, E. G. H., & Martín. R. P. (2022). CFD simulation of a venturi gas bubbles generator in a water-air system. International Journal of Software & Hardware Research in Engineering, 10(1), 136 – 145. ISSN-2347-4890.
Santos, E., Albuquerque, A., Lisboa, I., Murray, P., & Ermis, H. (2022). Economic Assessment of Energy Consumption in Wastewater Treatment Plants: Applicability of Alternative Nature-Based Technologies in Portugal. MDPI, Water, 14(13), 2042.
https://doi.org/10.3390/w14132042.
Schwarz, M., Behnisch, J., Trippel, J., Engelhart, M. & Wagner, M. (2021). Oxygen Transfer in Two-Stage Activated Sludge Wastewater Treatment Plants. MDPI, Water, 13(14), 1964, https://doi.org/10.3390/w13141964
Siatou, A., Manali, A. & Gikas, P. (2020). Energy Consumption and Internal Distribution in Activated Sludge Wastewater Treatment Plants of Greece. MDPI, Water, 12(4), 1204, https://doi.org/10.3390/w12041204
Stoppatoa, A., Benatoa, A., Vannaa, F. D., Tassinato, G., & Nisato, F. (2023). Hydrodynamic Cavitation for Pollutant Treatment in the New Horizon of Green Chemistry. Chemical Engineering Transactions, 99, 145 – 150. https://doi.org/10.3303/CET2399025.
Therrien, J. – D., Vanrolleghem, P. A., & Dorea, C. C. (2019). Characterization of the performance of venturi-based aeration devices for use in wastewater treatment in low-resource settings. Water SA, 45(2), 251 – 258.
Wiraputra, I. G. P. A. E., Edikresnha, D., Munir, M. M., & Khairurrija. (2016). Generation of Submicron Bubbles using Venturi Tubi Method. Journal of Physics: Conference Series, 739, 012058. doi:10.1088/1742-6596/739/1/012058.
Yadav, A., Kumar, A., & Sarkar, S. (2021). Performance evaluation of venturi aeration system. Aquacultural Engineering, 93, 102156. https://doi.org/10.1016/j.aquaeng.2021.102156.
Yaparatne, S., Doherty, Z. E., Magdaleno, A. L., Matula, E. E., MacRae, J. D., Garcia-Segura, S., & Apul, O. G. (2022). Effect of air nanobubbles on oxygen transfer, oxygen uptake, and diversity of aerobic microbial consortium in activated sludge reactors. Bioresource Technology, 351, 127090. https://doi.org/10.1016/j.biortech.2022.127090.
Zhang, M., Qiu, L., & Liu, G. (2020). Basic characteristics and application of micro – nano bubbles in water treatment. IOP Conf. Series: Earth and Environmental Science, 510, 042050. doi:10.1088/1755-1315/510/4/042050.
Zhang, Q., Zhao, X., Yin, J., & Sun, Z. (2023). Micro-Nano Bubbles Conditioning Treatment of Contaminated Sediment for Efficient Reduction: Dehydration Characteristic and Mechanism.MDPI, Water, 15, 1985. https://doi.org/10.3390/w15111985.