Nguyễn Khởi Nghĩa * , Đỗ Thành Luân , Nguyễn Thị Kiều Oanh , Kim Thị Hồng Hoa Đặng Thị Huyền Trang

* Tác giả liên hệ (nknghia@ctu.edu.vn)

Abstract

The study aimed to isolate and select salt tolerant bacteria from the nodules of leguminous plants such as Macroptilum lathyroides, Clitoria marianna, Sesbania sesban, Arachis pintoi and Aeschynomene indica. YEMA medium supplemented with 1% NaCl was used to isolate bacteria. As a result, 10 strains were isolated through identification characteristics, including Gram-negative, rod-shaped, motile, aerobic, non-spore-forming, and non-staining on YEMA medium supplemented with 0.025% Congo Red. In addition, they are resistant to salt in liquid culture medium with NaCl concentrations ranging from 2.5% to 10%. Among them, three strains LĐ6, TL3, and BV8 showed good salt tolerance up to 10% NaCl. Based on the results of 16S rDNA gene sequencing, strain TL3 was identified as Rhizobium sp. TL3, while LD6 and BV8 were characterised as Enterobacter sp. LD6 and Enterobacter sp. BV8, respectively.

Keywords: Enterobacter sp., legume, nitrogen fixing bacteria, Rhizobium sp., salt tolerant bacteria

Tóm tắt

Nghiên cứu được thực hiện nhằm phân lập và tuyển chọn chủng vi khuẩn chịu mặn từ nốt sần của Đậu hoang bông đỏ (Macroptilum lathyroides), Đậu hoang bông tím (Clitoria marianna), Điền thanh (Sesbania sesban), Cỏ lá đậu (Arachis pintoi) và Điền ma Ấn (Aeschynomene indica). Môi trường YEMA bổ sung 1% NaCl được dùng để phân lập vi khuẩn. Kết quả cho thấy, 10 dòng vi khuẩn đã được phân lập thông qua đặc tính nhận dạng gồm: Gram âm, hình que, di động, hiếu khí, không hình thành bào tử và không bắt màu trên môi trường YEMA có bổ sung 0,025% Congo Red. Ngoài ra, chúng có khả năng chịu mặn trong môi trường nuôi cấy lỏng có nồng độ NaCl dao động từ 2,5% đến 10%. Trong đó ba dòng LĐ6, TL3 và BV8 thể hiện khả năng chịu mặn tốt lên đến 10% NaCl. Dựa vào kết quả giải trình tự đoạn gen 16S rRNA, dòng TL3 được định danh với tên Rhizobium sp. TL3, trong khi LĐ6 và BV8 lần lượt là Enterobacter sp. LĐ6 và Enterobacter sp. BV8.

Từ khóa: Cây họ đậu, chịu mặn, Enterobacter sp., Rhizobium sp., vi khuẩn cố định đạm

Article Details

Tài liệu tham khảo

Ahmad, M., Zahir, Z. A., Asghar, H. N., & Arshad, M. (2012). The combined application of rhizobial strains and plant growth promoting rhizobacteria improves growth and productivity of mung bean (Vigna radiata L.) under salt-stressed conditions. Annals of microbiology, 62, 1321-1330.
https://doi.org/10.1007/s13213-011-0380-9

Ali, Q., Shabaan, M., Ashraf, S., Kamran, M., Zulfiqar, U., Ahmad, M., Zahir, A., Sarwar, M.J., Iqbal, R., Ali, B., Ali M. A., Elshikh, M.S., & Arslan, M. (2023). Comparative efficacy of different salt tolerant rhizobial inoculants in improving growth and productivity of Vigna radiata L. under salt stress. Scientific Reports, 13(1), 17442. https://doi.org/10.1038/s41598-023-44433-8

Ali, Q., Zahir, Z. A., Asghar, H. N., & Jamil, A. (2017). Inoculation with Rhizobial consortium for improving the growth, yield and quality of maize under salt-stressed conditions. Pakistan Journal of Agricultural Sciences, 54(1). https://doi.org/10.21162/PAKJAS/17.5388

Ayuso-Calles, M., Flores-Félix, J. D., & Rivas, R. (2021). Overview of the role of rhizobacteria in plant salt stress tolerance. Agronomy, 11(9), 1759. https://doi.org/10.3390/agronomy11091759

Bala, N., Sharma, P. K., & Lakshminarayana, K. (1990). Nodulation and nitrogen fixation by salinity-tolerant rhizobia in symbiosis with tree legumes. Agriculture, ecosystems & environment, 33(1), 33-46. https://doi.org/10.1016/0167-8809(90)90142-Z

Bernard, T., Pocard, J. A., Perround, B., & Le Rudulier, D. (1986). Variations in the response of salt-stressed Rhizobium strains to betaines. Archives of Microbiology, 143, 359-364.
https://doi.org/10.1007/BF00412803

Bertrand, A., Prévost, D., Juge, C., & Chalifour, F. P. (2011). Impact of elevated CO2 on carbohydrate and ureide concentrations in soybean inoculated with different strains of Bradyrhizobium japonicum. Botany, 89(7), 481-490.
https://doi.org/10.1139/b11-034

Breedveld, M. W., Zevenhuizen, L. P., & Zehnder, A. J. (1991). Osmotically-regulated trehalose accumulation and cyclic β-(1, 2)-glucan excretion by Rhizobium leguminosarum biovar trifolii TA-1. Archives of microbiology, 156, 501-506.
https://doi.org/10.1007/BF00245399

Dao, B. T., Phong, N. T., & Diep, C. N. (2021). Isolation and identification of endogenous bacteria from peanuts cultivated in Binh Dinh province. CTU Journal of Science, 57(6), 125-131.

Dardanelli, M. S., de Cordoba, F. J. F., Espuny, M. R., Carvajal, M. A. R., Díaz, M. E. S., Serrano, A. M. G., & Megías, M. (2008). Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biology and Biochemistry, 40(11), 2713-2721.
https://doi.org/10.1016/j.soilbio.2008.06.016

Dewhurst, R. J., Delaby, L., Moloney, A., Boland, T., & Lewis, E. (2009). Nutritive value of forage legumes used for grazing and silage. Irish Journal of Agricultural and Food Research, 167-187.

Elsheikh, E. A. E., & Wood, M. (1995). Nodulation and N2 fixation by soybean inoculated with salt-tolerant rhizobia or salt-sensitive bradyrhizobia in saline soil. Soil Biology and Biochemistry, 27(4-5), 657-661. Evelin, H., Kapoor, R., & Giri, B. (2009). Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Annals of botany, 104(7), 1263-1280. https://doi.org/10.1016/0038-0717(95)98645-5

Embalomatis, A., Papaxosta, D. K., & Katinakis, P. (1994). Evaluation of Rhizobium mdiloti strains isolated from indigenous populations in Northern Greece. Journal of Agronomy and Crop Science, 172(2), 73-80.
https://doi.org/10.1111/j.1439-037X.1994.tb00532.x

Ghosh, P. K., Sen, S. K., & Maiti, T. K. (2015). Production and metabolism of IAA by Enterobacter spp. (Gammaproteobacteria) isolated from root nodules of a legume Abrus precatorius L. Biocatalysis and Agricultural Biotechnology, 4(3), 296-303. https://doi.org/10.1016/j.bcab.2015.04.002

Graham, P. H., & Vance, C. P. (2003). Legumes: importance and constraints to greater use. Plant physiology, 131(3), 872-877. https://doi.org/10.1104/pp.017004

Hafeez, F. Y., Aslam, Z., & Malik, K. A. (1988). Effect of salinity and inoculation on growth, nitrogen fixation and nutrient uptake of Vigna radiata (L.) Wilczek. Plant and soil, 106, 3-8. https://doi.org/10.1007/BF02371188

Hahn, N. J. (1966). The congo red reaction in bacteria and its usefulness in the identification of rhizobia. Canadian journal of Microbiology, 12(4), 725-733. https://doi.org/10.1139/m66-099

Halebian, S., Harris, B., Finegold, S. M., & Rolfe, R. D. (1981). Rapid method that aids in distinguishing Gram-positive from Gram-negative anaerobic bacteria. Journal of clinical microbiology, 13(3), 444-448. https://doi.org/10.1128/jcm.13.3.444-448.1981

Herridge, D. F., Peoples, M. B., & Boddey, R. M. (2008). Global inputs of biological nitrogen fixation in agricultural systems. Plant and soil, 311, 1-18.
https://doi.org/10.1007/s11104-008-9668-3

Huy, N. A., & Hiep, N. H. (2018). Isolation and identification of salt-tolerant bacterial strains capable of nitrogen fixation and IAA synthesis from rice-shrimp farming soils in Bac Lieu, Soc Trang, and Kien Giang. Can Tho University Journal of Science, 54(1), 7-12. https://doi.org/10.22144/ctu.jvn.2018.002

Iqbal, M. A., Khalid, M., Zahir, Z. A., & Ahmad, R. (2016). Auxin producing plant growth promoting rhizobacteria improve growth, physiology and yield of maize under saline field conditions. Int J Agric Biol, 18(1), 37-45. https://doi.org/10.17957/IJAB/15.0059

Jaiswal, S. K., Beyan, S. M., & Dakora, F. D. (2016). Distribution, diversity and population composition of soybean-nodulating bradyrhizobia from different agro-climatic regions in Ethiopia. Biology and Fertility of Soils, 52, 725-738. https://doi.org/10.1007/s00374-016-1108-6

Jha, C. K., Aeron, A., Patel, B. V., Maheshwari, D. K., & Saraf, M. (2011). Enterobacter: role in plant growth promotion. Bacteria in agrobiology: Plant growth responses, 159-182. https://doi.org/10.1007/978-3-642-20332-9_8

Jimenez, S., Santana, O., Lara-Rojas, F., Arthikala, M. K., Armada, E., Hashimoto, K., Kuchitsu, K., Salgado, S., Aguirre, J., Quinto, K., & Cárdenas, C. (2019). Differential tetraspanin genes expression and subcellular localization during mutualistic interactions in Phaseolus vulgaris. PLoS One, 14(8), e0219765. https://doi.org/10.1371/journal.pone.0219765

Kleen, J., Taube, F., & Gierus, M. (2011). Agronomic performance and nutritive value of forage legumes in binary mixtures with perennial ryegrass under different defoliation systems. The Journal of Agricultural Science, 149(1), 73-84. https://doi.org/10.1017/S0021859610000456

Kucuk, Ç., & Kivanc, M. (2008). Preliminary characterization of Rhizobium strains isolated from chickpea nodules. African Journal of Biotechnology, 7(6).

Kumar, A., Maurya, B. R., Raghuwanshi, R., Meena, V. S., & Tofazzal Islam, M. (2017). Co-inoculation with Enterobacter and Rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under indo-gangetic plain of India. Journal of plant growth Regulation, 36, 608-617. https://doi.org/10.1007/s00344-016-9663-5

Laranjo, M., & Oliveira, S. (2011). Tolerance of Mesorhizobium type strains to different environmental stresses. Antonie Van Leeuwenhoek, 99, 651-662. https://doi.org/10.1007/s10482-010-9539-9

Li, X., Geng, X., Xie, R., Fu, L., Jiang, J., Gao, L., & Sun, J. (2016). The endophytic bacteria isolated from elephant grass (Pennisetum purpureum Schumach) promote plant growth and enhance salt tolerance of Hybrid Pennisetum. Biotechnology for Biofuels, 9, 1-12. https://doi.org/10.1186/s13068-016-0592-0

Mohammad, R. M., Akhavan-Kharazian, M., Campbell, W. F., & Rumbaugh, M. D. (1991). Identification of salt-and drought-tolerant Rhizobium meliloti L. strains. Plant and soil, 134, 271-276. https://doi.org/10.1007/BF00012045

Mokrani, S., Nabti, E. H., & Cruz, C. (2020). Current advances in plant growth promoting bacteria alleviating salt stress for sustainable agriculture. Applied Sciences, 10(20), 7025. https://doi.org/10.3390/app10207025

Mondal, H. K., Mehta, S., Kaur, H., & Gera, R. (2017). Characterization of stress tolerant mungbean rhizobia as PGPR and plant growth promotion under abiotic stress. Indian Ecol. Soc, 44, 38.

Moussa, L. A., Mohy, E. A., & El Banna Ib, M. (2012). Zea mays cultivar behavior as affected by Rhizobium radiobacter inoculation in salt-stressed environments. Journal of American Science, 8(7), 743-750.

Moussaid, S., Dominguez-Ferreras, A., Munoz, S., Aurag, J., Berraho, E. B., & Sanjuan, J. (2015). Increased trehalose biosynthesis improves Mesorhizobium ciceri growth and symbiosis establishment in saline conditions. Symbiosis, 67, 103-111.
https://doi.org/10.1007/s13199-015-0338-y

Mpepereki, S., Makonese, F., & Wollum, A. G. (1997). Physiological characterization of indigenous rhizobia nodulating Vigna unguiculata in Zimbabwean soils. Symbiosis.

Ngom, M., Oshone, R., Diagne, N., Cissoko, M., Svistoonoff, S., Tisa, L. S., Laurent, L., Sy, M. O., & Champion, A. (2016). mTolerance to environmental stress by the nitrogen-fixing actinobacterium Frankia and its role in actinorhizal plants adaptation. Symbiosis, 70, 17-29. https://doi.org/10.1007/s13199-016-0396-9

Novoa, R., & Loomis, R. S. (1981). Nitrogen and plant production. Plant and soil, 58, 177-204. https://doi.org/10.1007/BF02180053

Ohyama, T. (2017). The role of legume-rhizobium symbiosis in sustainable agriculture. Legume nitrogen fixation in soils with low phosphorus availability: Adaptation and regulatory implication, 1-20.
https://doi.org/10.1007/978-3-319-55729-8_1

Ondieki, D. K., Nyaboga, E. N., Wagacha, J. M., & Mwaura, F. B. (2017). Morphological and genetic diversity of Rhizobia nodulating cowpea (Vigna unguiculata L.) from agricultural soils of lower eastern Kenya. International Journal of Microbiology, 2017(1), 8684921. https://doi.org/10.1155/2017/8684921

Pagare, K. A., Navale, A., Deokar, C., & Awale, A. (2018). Isolation, selection and characterization of salt tolerant Rhizobium. Journal of Pharmacognosy and Phytochemistry, 7(6), 1976-1982.

Plá, C. L., & Cobos-Porras, L. (2015). Salinity: physiological impacts on legume nitrogen fixation. Legume Nitrogen Fixation in a Changing Environment: Achievements and Challenges, 35-65.
https://doi.org/10.1007/978-3-319-06212-9_3

Rabie, G. H., Aboul-Nasr, M. B., & Al-Humiany, A. (2005). Increased salinity tolerance of cowpea plants by dual inoculation of an arbuscular mycorrhizal fungus Glomus clarum and a nitrogen-fixer Azospirillum brasilense. Mycobiology, 33(1), 51-60. https://doi.org/10.4489/MYCO.2005.33.1.051

Ruiz, W. F., Valdez-Nuñez, R. A., Bedmar, E. J., & Castellano-Hinojosa, A. (2019). Utilization of endophytic bacteria isolated from legume root nodules for plant growth promotion. Field crops: Sustainable management by PGPR, 145-176. https://doi.org/10.1007/978-3-030-30926-8_6

Sánchez-Cruz, R., Vázquez, I. T., Batista-García, R. A., Méndez-Santiago, E. W., del Rayo Sanchez-Carbente, M., Leija, A., Ruan, V. L., Hernández, G., Wong-Villarreal, A., & Folch-Mallol, J. L. (2019). Isolation and characterization of endophytes from nodules of Mimosa pudica with biotechnological potential. Microbiological research, 218, 76-86. https://doi.org/10.1016/j.micres.2018.09.008

Satyam, A. M., Kolase, S. V., Narute, T. K., Kale, A. A., Chandanshive, A. V., Durgude, A. G., & Barge, M. S. (2023). Salt and temperature tolerant rhizobacteria: A comprehensive study on biochemical profiling and biocontrol potential.

Sharma, S. R., Rao, N. K., Gokhale, T. S., & Ismail, S. (2013). Isolation and characterization of salt-tolerant rhizobia native to the desert soils of United Arab Emirates. Emirates Journal of Food and Agriculture, 25(2), 102. https://doi.org/10.9755/ejfa.v25i2.7590

Somasegaran, P., & Hoben, H. J. (2012). Handbook for rhizobia: methods in legume-Rhizobium technology. Springer Science & Business Media.

Soussana, J. F., & Lemaire, G. (2014). Coupling carbon and nitrogen cycles for environmentally sustainable intensification of grasslands and crop-livestock systems. Agriculture, Ecosystems & Environment, 190, 9-17. https://doi.org/10.1016/j.agee.2013.10.012

Suryani, N. N., Suarna, I. W., & Duarsa, M. A. P. (2023). Botanical Composition and Forage Quality as Swamp Buffalo (Bubalus bubalis) Feed In Jembrana Regency, Bali Province–Indonesia. International Journal of Life Science and Agriculture Research, 2(11), 463-467. https://doi.org/10.55677/ijlsar/V02I11Y2023-06

Suzaki, T., Takeda, N., Nishida, H., Hoshino, M., Ito, M., Misawa, F., Handa, Y., Miura, K., & Kawaguchi, M. (2019). LACK OF SYMBIONT ACCOMMODATION controls intracellular symbiont accommodation in root nodule and arbuscular mycorrhizal symbiosis in Lotus japonicus. PLoS Genetics, 15(1), e1007865. https://doi.org/10.1371/journal.pgen.1007865

Velázquez, E., Carro, L., Flores-Félix, J. D., Martínez-Hidalgo, P., Menéndez, E., Ramírez-Bahena, M. H., Mulas, R., González-Andrés, F., Martínez-Molina, E., & Peix, A. (2017). The legume nodule microbiome: a source of plant growth-promoting bacteria. Probiotics and plant health, 41-70.
https://doi.org/10.1007/978-981-10-3473-2_3

Verma, M., Singh, A., Dwivedi, D. H., & Arora, N. K. (2020). Zinc and phosphate solubilizing Rhizobium radiobacter (LB2) for enhancing quality and yield of loose leaf lettuce in saline soil. Environmental Sustainability, 3(2), 209-218.
https://doi.org/10.1007/s42398-020-00110-4

Vincent, J. M. (1970). A manual for the practical study of the root-nodule bacteria.

World Health Organization. (2018). The state of food security and nutrition in the world 2018: building climate resilience for food security and nutrition. Food & Agriculture Org.

Yelton, M. M., Yang, S. S., Edie, S. A., & Lim, S. T. (1983). Characterization of an effective salt-tolerant, fast-growing strain of Rhizobium japonicum. Microbiology, 129(5), 1537-1547. https://doi.org/10.1099/00221287-129-5-1537

Youseif, S. H., Abd El-Megeed, F. H., Abdelaal, A. S., Ageez, A., & Martínez-Romero, E. (2021). Plant–microbe–microbe interactions influence the faba bean nodule colonization by diverse endophytic bacteria. FEMS microbiology ecology, 97(11), fiab138. https://doi.org/10.1093/femsec/fiab138

Zahran, H. H. (2001). Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and biotechnology. Journal of biotechnology, 91(2-3), 143-153. https://doi.org/10.1016/S0168-1656(01)00342-X

Zhang, W., Y. Chen, Q. Shi, B. Hou, and Q. Yang (2020) Identification of bacteria associated with periapical abscesses of primary teeth by sequence analysis of 16S rDNA clone libraries. Microb. Pathog. 141:103954. https://doi.org/10.1016/j.micpath.2019.103954

Zou, N., Dart, P. J., & Marcar, N. E. (1995). Interaction of salinity and rhizobial strain on growth and N2-fixation by Acacia ampliceps. Soil Biology and Biochemistry, 27(4-5), 409-413.
https://doi.org/10.1016/0038-0717(95)98611-Q