Đặc điểm màu sắc hạt gạo tương quan đến các hợp chất kháng oxy hóa của các giống lúa mùa địa phương
Abstract
The study utilized local seasonal rice varieties collected from various provinces in the Mekong Delta to examine antioxidant compounds, aiming to identify varieties with high antioxidant properties for future breeding programs. The analysis revealed that secondary compounds, such as anthocyanins, polyphenols, and antioxidant activity indices including 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, and Ferric Ion Reducing Antioxidant Power (FRAP) showed a strong correlation with the color of brown rice grains. Specifically, as grain color deepens from opaque white to light brown, brown, and reddish-brown, the antioxidant content increases. The research identified two varieties, such as Phuoc Ly and Ngu, with high antioxidant capacity. These findings represent an important first step towards breeding rice varieties with enhanced antioxidant properties.
Tóm tắt
Các giống lúa theo mùa địa phương được thu thập từ nhiều tỉnh khác nhau ở đồng bằng sông Cửu Long để kiểm tra các hợp chất chống oxy hóa, điều này nhằm xác định các giống có đặc tính chống oxy hóa cao cho các chương trình lai tạo trong tương lai. Kết quả phân tích cho thấy các hợp chất thứ cấp, chẳng hạn như anthocyanin, polyphenol và các chỉ số hoạt động chống oxy hóa bao gồm 2,2'-azino-bis (axit 3-ethylbenzothiazoline-6-sulphonic) (ABTS), gốc 2,2-diphenyl-1-picrylhydrazyl (DPPH) và sức mạnh chống oxy hóa khử ion sắt (FRAP) cho thấy mối tương quan mạnh với màu sắc của hạt gạo lứt. Cụ thể, khi màu hạt chuyển từ trắng đục sang nâu nhạt, nâu và nâu đỏ, hàm lượng chất chống oxy hóa tăng lên. Trong nghiên cứu, hai giống lúa đã được xác định, chẳng hạn như Phước Lý và Ngư có khả năng chống oxy hóa cao. Những phát hiện này là bước đầu tiên quan trọng hướng tới việc lai tạo các giống lúa có đặc tính chống oxy hóa được tăng cường.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Tài liệu tham khảo
Benzie, I. F. & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical biochemistry, 239(1), 70-76.
Yang, C. H. S., Landau, J. M., Huang, M. T., & Newmark, H. L. (2001). Inhibition carciogenesis by dietary polyphenol compounds. Annual Review of Nutrition, 21, 318-406.
Breene W. M. (1990). Nutritional and medicinal value of speciality mushroom. J. Food Protect, 53(10), 883-894.
Caceres, P. J., Martínez-Villaluenga, C., Amigo, L., & Frias, J. (2014). Maximising the phytochemical content and antioxidant activity of Ecuadorian brown rice sprouts through optimal germination conditions. Food chemistry, 152, 407-414.
Chalker‐Scott, L. (1999). Environmental significance of anthocyanins in plant stress responses. Photochemistry and photobiology, 70(1), 1-9.
Chatthongpisut, R., Schwartz, S. J., & Yongsawatdigul, J. (2015). Antioxidant activities and antiproliferative activity of Thai purple rice cooked by various methods on human colon cancer cells. Food chemistry, 188, 99-105.
Fitzgerald, M. A., Rahman, S., Resurreccion, A. P., Concepcion, J., Daygon, V. D., Dipti, S. S., & Bird, A. R. (2011). Identification of a major genetic determinant of glycaemic index in rice. Rice, 4(2), 66-74.
https://doi.org/10.1007/s12284-011-9073-z
Ghasemzadeh, A., Karbalaii, M. T., Jaafar, H. Z., & Rahmat, A. (2018). Phytochemical constituents, antioxidant activity, and antiproliferative properties of black, red, and brown rice bran. Chemistry Central Journal, 12(1), 1-13. https://doi.org/10.1186/s13065-018-0382-9
Gofman, F., & Bergman, C. (2004) Rice kernel phenolic content and its relationship with antiradical efciency. J Sci Food Agric 84(10):1235–1240.
https://doi.org/10.1002/jsfa.1780
Graham, R. (2002). A proposal for IRRI to establish a grain quality and nutrition research center (No. 2169-2019-1615).
Gunaratne, A., Wu, K., Li, D., Bentota, A., Corke, H., & Cai, Y. Z. (2013). Antioxidant activity and nutritional quality of traditional red-grained rice varieties containing proanthocyanidins. Food chemistry, 138(2-3), 1153-1161. https://doi.org/10.1016/j.foodchem.2012.11.129
Juliano, B. O. (1971). A simplified assay for milled rice amylose. Cereal Sci, 16, 334-338, 340, 360.
IRRI (International Rice Research Institute), 2013. Standard evaluation system for rice (5th edition). International Rice Research Institute, P.O. Box 933, 1099 Manila, Philippines.
Kamei, H., Kojima, T., Hasegawa, M., Koide, T., Umeda, T., Yukawa, T., & Terabe, K. (1995). Suppression of tumor cell growth by anthocyanins in vitro. Cancer Invest, 13, 590-594.
https://doi.org/10.3109/07357909509024927
Li, F., Chen, F., Ling, W. H., & Li, H. B. (2012). Antioxidant capacities, phenolic compounds and polysaccharide contents of 49 edible macro-fungi. Food Funct, 3, 1195–1205. https://doi.org/10.1039/c2fo30110e
Mazza, G., & Gao, L. (2005). Blue and purple grains. In: Abdel-Aal E-SM & Peter PJ (Eds.), Specialty Grains for Food and Feed. American Association of Cereal Chemists. St. Paul. USA, 45-67.
Moreno, Y. S., Sánchez, G. S., Hernández, D. R., & Lobato, N.R. (2005). Characterization of anthocyanin extracts from maize kernels. J Chromatogr Sci, 43, 483-487. https://doi.org/10.1093/chromsci/43.9.483
Nam, S. H., Choi, S. P., Kang, M. Y., Koh, H. J., Kozukue, N., & Friedman, M. (2006). Antioxidative activities of bran from twenty-one pigmented rice cultivars. Food Chemistry, 94, 613-620. https://doi.org/10.1016/j.foodchem.2004.12.010
Nenadis, N., Wang, L. F., Tsimidou, M., & Zhang, H. Y. (2004). Estimation of scavenging activity of phenolic compounds using the ABTS•+ assay. Journal of agricultural and food chemistry, 52(15), 4669-4674. https://doi.org/10.1021/jf0400056
Petroni, K., & Tonelli, C. (2011). Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant science, 181(3), 219-229. https://doi.org/10.1016/j.plantsci.2011.05.009
Philpott, M., Gould, K. S., Lim, C., & Ferguson, L.R. (2006). In situ and in vitro antioxidant activity of sweet potato anthocyanins. J Agric Food Chem, 54, 1710-171.
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med, 26, 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
Shen, C. L., Yeh, J. K., Stoecker, B. J., Chyu, M. C., & Wang, J. S. (2009). Green tea polyphenols mitigate deterioration of bone microarchitecture in middle-aged female rats. Bone, 44(4), 684-690. https://doi.org/10.1016/j.bone.2008.11.018
Sutharut, J., & Sudarat, J. (2012). Total anthocyanin content and antioxidant activity of germinated colored rice. International Food Research Journal, 19(1), 215-221.
Tian, S., Nakamura, K., & Kayahara, H. (2004). Analysis of phenolic compounds in white rice, brown rice, and germinated brown rice. Journal of agricultural and food chemistry, 52(15), 4808-4813. https://doi.org/10.1021/jf049446f
Tsuda, T., Horio, F., & Osawa, T. (2002). Cyanidin 3-О-β-glucoside suppresses nitric oxide production during a zymosan treatment in rats. J Nutr Sci Vitaminol, 48, 305-310. https://doi.org/10.3177/jnsv.48.305
Tsuda, T., Horio, F., Uchida, K., Aoki, H., & Osawa, T. (2003). Dietary cyanidin 3-О-β-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia. J Nutr, 133, 2125-2130. https://doi.org/10.1093/jn/133.7.2125
Vichapong, J., Sookserm, M., Srijesdaruk, V., Swatsitang, P., & Srijaranai, S. (2010). High performance liquid chromatographic analysis of phenolic compounds and their antioxidant activities in rice varieties. LWT-Food Science and Technology, 43(9), 1325-1330. https://doi.org/10.1016/j.lwt.2010.05.007
Wrolstad, R. E. (2004). Anthocyanin pigments—Bioactivity and coloring properties. Journal of Food Science, 69(5), C419-C425. https://doi.org/10.1111/j.1365-2621.2004.tb10709.x
Wu, X., & Prior, R. L. (2005). Identification and characterization of anthocyanins by high-performance liquid chromatography–mass spectrometry in several widely consumed fruits and vegetables. Journal of Agricultural and Food Chemistry, 53(8), 3024–3032. https://doi.org/10.1021/jf0478861
Prior, R. L., & Wu, X. (2006). Anthocyanins: structural characteristics that result in unique metabolic patterns and biological activities. Free Radical Research, 40(10), 1014-1028.
Yang, C. S., Landau, J. M., Huang, M. T., & Newmark, H. L. (2001). Inhibition of carcinogenesis by dietary polyphenolic compounds. Annual review of nutrition, 21(1), 381-406. https://doi.org/10.1146/annurev.nutr.21.1.381
Zhang, Y., & Butelli, E. (2013). Anthocyanins: Biosynthesis, regulation, and transport. Trends in Plant Science, 18(9), 584-593. https://doi.org/10.1016/j.tplants.2013.04.012
Zhang, Y., Butelli, E., & Martin, C. (2014). MYB transcription factors regulating anthocyanin biosynthesis in plants. Current Opinion in Plant Biology, 19, 81–90. https://doi.org/10.1016/j.pbi.2014.05.011
Zhao, C., Giusti, M. M., Malik, M., Moyer, M. P., & Magnuson, B. A, (2004). Effects of commercial anthocyanin-rich extracts on colonic cancer and nontumorigenic colonic cell growth. J Agric Food Chem, 52, 6122-6128. https://doi.org/10.1021/jf049517a