Hiệu quả phối hợp phương pháp tiêm và cho ăn vắc xin trong phòng bệnh gan thận mủ (Edwardsiella ictaluri) trên cá tra (Pangasianodon hypothalamus)
Abstract
This study aimed to evaluate the efficacy of combined injection and oral vaccination against Edwardsiella ictaluri in striped catfish (Pangasianodon hypophthalmus) based on growth performance, RPS%, and immune gene expression. The experiment followed a completely randomized design with four treatment groups: (NT1) injection on day 1 followed by oral vaccination on day 30, (NT2) injection on day 1 without further oral vaccination, (NT3) no injection on day 1 but with oral vaccination on day 30, and (NT4-Control) no injection or oral vaccination at any point. After 50 days, all groups were challenged with E. ictaluri to evaluate vaccine-induced protection. The challenged result showed that the highest RPS protection rate was NT1 (61.9%), followed by NT2 and NT3, with 47.6% and 33.3%, respectively. Furthermore, both injection and oral vaccination led to immune gene upregulation, indicating immune activation in the experimental fish. These results demonstrate that a combination of injection and oral vaccination enhances protective efficacy and is a promising strategy to boost disease resistance in the striped catfish.
Tóm tắt
Trong nghiên cứu, việc đánh giá hiệu quả khi phối hợp tiêm và cho ăn vắc xin phòng bệnh gan thận mủ (Edwardsiella ictaluri) trên cá tra (Pangasianodon hypophthalmus) thông qua các chỉ tiêu tăng trưởng, khả năng bảo hộ (RPS%) và biểu hiện gen miễn dịch đã được thực hiện. Thí nghiệm được bố trí hoàn toàn ngẫu nhiên:(NT1) tiêm vắc xin ở ngày đầu và cho ăn vắc xin ngày thứ 30,(NT2) tiêm vắc xin ở ngày đầu và không cho ăn vắc xin ngày thứ 30, (NT3) không tiêm vắc xin ngày đầu và cho ăn vắc xin ngày thứ 30, và (NT4 - đối chứng) không tiêm vắc xin vào ngày đầu và không cho ăn vắc xin vào ngày thứ 30. Sau 50 ngày, tất cả các nghiệm thức được gây cảm nhiễm với E. ictaluri để đánh giá khả năng bảo hộ của vắc xin. Kết quả cảm nhiễm cho thấy hệ số RPS cao nhất được ghi nhận ở nghiệm thức NT1 (61,9%), tiếp theo là NT2 và NT3 lần lượt là 47,6% và 33,3%. Ngoài ra, sự tăng biểu hiện gen miễn dịch sau khi tiêm hoặc cho ăn vắc xin cho thấy sự kích hoạt hệ miễn dịch cá thí nghiệm. Kết quả nghiên cứu cho thấy sự phối hợp tiêm và cho ăn vắc xin không chỉ nâng cao hiệu quả bảo hộ mà còn là một giải pháp tiềm năng để tăng cường sức đề kháng cho cá tra.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Tài liệu tham khảo
Amend, D. F. (1981). Potency testing of fish vaccines. Developments in Biological Standardization, 49, 447–454.
Bercovier, H., Ghittino, C., & Eldar, A. (1997). Immunization with bacterial antigens: infections with streptococci and related organisms. Developments in Biological Standardization, 90, 153–160.
Crumlish, M., Dung, T. T., Turnbull, J. F., Ngoc, N. T. N., & Ferguson, H. W. (2002). Identification of Edwardsiella ictaluri from diseased freshwater catfish, Pangasius hypophthalmus (Sauvage), cultured in the Mekong Delta, Vietnam. Journal of Fish Diseases, 25(12), 733–736. https://doi.org/10.1046/j.1365-2761.2002.00412.x
Dinarello, C. A. (2009). Immunological and inflammatory functions of the interleukin-1 family. Annual Review of Immunology, 27(1), 519–550.
https://doi.org/10.1146/annurev.immunol.021908.132612
Dung, T. T. (2010). Edwardsiella ictaluri in Pangasianodon catfish: antimicrobial resistance and the early interactions with its host. In Veterinary Sciences (pp. 1–136). Ghent University.
Dung, T. T., Ngoc, N. T. N., Thinh, N. Q., Thy, D. T. M., Tuan, N. A., Shinn, A., & Crumlish, M. (2008). Common diseases of pangasius catfish farmed in Viet Nam. Global Aquaculture Advocate, 11(4), 77–78.
Ellis, A. E. (2001). Innate host defense mechanisms of fish against viruses and bacteria. Developmental & Comparative Immunology, 25(8–9), 827–839.
https://doi.org/10.1016/S0145-305X(01)00038-6
FAO. (2022). The State of World Fisheries and Aquaculture 2022. https://doi.org/10.4060/CC0461EN
Hang, N. T. T., & Oanh, Đ. T. H. (2012). Identification of parasitic groups creating cysts in catfish (Pangasianodon hypophthalmus). Can Tho University Journal of Science, 22c, 155–164 (in Vietnamese).
Harun, N. O., Wang, T., & Secombes, C. J. (2011). Gene expression profiling in naïve and vaccinated rainbow trout after Yersinia ruckeri infection: Insights into the mechanisms of protection seen in vaccinated fish. Vaccine, 29(26), 4388–4399.
https://doi.org/10.1016/j.vaccine.2011.04.003
Huang, L. Y., Wang, K. Y., Xiao, D., Chen, D. F., Geng, Y., Wang, J., He, Y., Wang, E. L., Huang, J. L., & Xiao, G. Y. (2014). Safety and immunogenicity of an oral DNA vaccine encoding Sip of Streptococcus agalactiae from Nile tilapia Oreochromis niloticus delivered by live attenuated Salmonella typhimurium. Fish and Shellfish Immunology, 38(1), 34–41. https://doi.org/10.1016/j.fsi.2014.02.017
Khoi, L. M., Dung, T. T., Hang, B. T. B., Seng, E. K., Hian, S. K., Hoa, T. T. T., & Thy, Đ. T. M. (2021). Evaluation of the immunological effectiveness of the vaccine against hemorrhagic disease caused by Aeromonas hydrophila on catfish (Pangasianodon hypophthalmus). Can Tho University Journal of Science, 57(3), 181–190 (in Vietnamese).
https://doi.org/10.22144/ctu.jvn.2021.100
Khoi, L. M., Trung, N. B., Hieu, H. T., & Dung, T. T. (2023). Effects of feeding frequency and efficacy of the β-glucan and vitamin C to enhance the ability of vaccine prevent Edwardsiella ictaluri infected in striped catfish (Pangasianodon hypophthalmus). Can Tho University Journal of Science, 59(2 SE-), 154–164 (in Vietnamese). https://doi.org/10.22144/ctu.jvn.2023.075
Kole, S., Qadiri, S. S. N., Shin, S. M., Kim, W. S., Lee, J., & Jung, S. J. (2019). PLGA encapsulated inactivated-viral vaccine: Formulation and evaluation of its protective efficacy against viral haemorrhagic septicaemia virus (VHSV) infection in olive flounder (Paralichthys olivaceus) vaccinated by mucosal delivery routes. Vaccine, 37(7), 973-983. https://doi.org/10.1016/j.vaccine.2018.12.063
Kordon, A. O., Kalindamar, S., Majors, K., Abdelhamed, H., Tan, W., Karsi, A., & Pinchuk, L. M. (2020). Live attenuated Edwardsiella ictaluri vaccines enhance the protective innate immune responses of channel catfish B cells. Developmental & Comparative Immunology, 109, 103711.
https://doi.org/10.1016/j.dci.2020.103711
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25(4), 402-408.
https://doi.org/10.1006/meth.2001.1262
Lu, C. lan, Wangkahart, E., Huang, J. wei, Huang, Y. xiong, Huang, Y., Cai, J., Jian, J. chang, & Wang, B. (2024). Immune response and protective efficacy of Streptococcus agalactiae vaccine coated with chitosan oligosaccharide for different immunization strategy in nile tilapia (Oreochromis niloticus). Fish and Shellfish Immunology, 145, 109353. https://doi.org/10.1016/j.fsi.2023.109353
Ly, L. T. T., Nguyen, D. N., Vo, P. H., & Doan, C. Van. (2009). Hemorrhage disease of cultured tra catfish (Pangasianodon hypophthalmus) in Mekong Delta (Vietnam). Israeli Journal of Aquaculture - Bamidgeh, 61.
https://doi.org/10.46989/001c.20557
Mohamad, A., Mursidi, F. A., Zamri-Saad, M., Amal, M. N. A., Annas, S., Monir, M. S., Loqman, M., Hairudin, F., Al-Saari, N., & Ina-Salwany, M. Y. (2022). Laboratory and field assessments of oral vibrio vaccine indicate the potential for protection against vibriosis in cultured marine fishes. Animals, 12(2), 133. https://doi.org/10.3390/ani12020133
Montero, D., Torrecillas, S., Serradell, A., Nedoluzhko, A., Fernández-Montero, Á., Makol, A., Monzón-Atienza, L., Valdenegro, V., Sanahuja, I., Galindo-Villegas, J., & Acosta, F. (2024). Phytogenics enhance welfare and vaccine efficacy against Vibrio anguillarum in European seabass (Dicentrarchus labrax) juveniles. Aquaculture, 585, 740714..
https://doi.org/10.1016/j.aquaculture.2024.740714
Munang’andu, H. M., & Evensen, Ø. (2019). Correlates of protective immunity for fish vaccines. Fish and Shellfish Immunology, 85, 132–140.
https://doi.org/10.1016/j.fsi.2018.03.060
Nakanishi, T., & Ototake, M. (1997). Antigen uptake and immune responses after immersion vaccination. Developments in Biological Standardization, 90, 59–68.
Raida, M. K., & Buchmann, K. (2008). Bath vaccination of rainbow trout (Oncorhynchus mykiss Walbaum) against Yersinia ruckeri: Effects of temperature on protection and gene expression. Vaccine, 26(8), 1050–1062. https://doi.org/10.1016/j.vaccine.2007.12.029
Ramírez-Paredes, J. G., Mendoza-Roldan, M. A., Lopez-Jimena, B., Shahin, K., Metselaar, M., Thompson, K. D., Penman, D. J., Richards, R. H., & Adams, A. (2019). Whole cell inactivated autogenous vaccine effectively protects red Nile tilapia (Oreochromis niloticus) against francisellosis via intraperitoneal injection. Journal of Fish Diseases, 42(8), 1191–1200. https://doi.org/10.1111/jfd.13041
Ramirez-Paredes, J. G., Verner-Jeffreys, D. W., Papadopoulou, A., Monaghan, S. J., Smith, L., Haydon, D., Wallis, T. S., Davie, A., Adams, A., & Migaud, H. (2020). A commercial autogenous injection vaccine protects ballan wrasse (Labrus bergylta, Ascanius) against Aeromonas salmonicida vapA type V. Fish and Shellfish Immunology, 107, 43–53. https://doi.org/10.1016/j.fsi.2020.09.040
Ringø, E., Olsen, R. E., Jensen, I., Romero, J., & Lauzon, H. L. (2014). Application of vaccines and dietary supplements in aquaculture: possibilities and challenges. Reviews in Fish Biology and Fisheries, 24(4), 1005–1032. https://doi.org/10.1007/s11160-014-9361-y
Sakai, M., Hikima, J. I., & Kono, T. (2021). Fish cytokines: current research and applications. Fisheries Science, 87, 1-9. https://doi.org/10.1007/s12562-020-01476-4
Sakai, T., Yuasa, K., Sano, M., & Iida, T. (2009). Identification of Edwardsiella ictaluri and E. tarda by species-specific polymerase chain reaction targeted to the upstream region of the fimbrial gene. Journal of Aquatic Animal Health, 21(2), 124–132.
https://doi.org/10.1577/H08-061.1
Secombes, C. J., Zou, J., Laing, K., Daniels, G. D., & Cunningham, C. (1999). Cytokine genes in fish. Aquaculture, 172(1–2), 93–102. https://doi.org/10.1016/S0044-8486(98)00441-4
Silvaraj, S., Yasin, I. S. M., Karim, M. M. A., & Saad, M. Z. (2020). Elucidating the efficacy of vaccination against vibriosis in Lates calcarifer using two recombinant protein vaccines containing the outer membrane protein k (R-ompk) of Vibrio alginolyticus and the DNA chaperone j (r-dnaj) of Vibrio harveyi. Vaccines, 8(4), 1–19.
https://doi.org/10.3390/vaccines8040660
Thinh, N. H., Kuo, T. Y., Hung, L. T., Loc, T. H., Chen, S. C., Evensen, & Schuurman, H. J. (2009). Combined immersion and oral vaccination of Vietnamese catfish (Pangasianodon hypophthalmus) confers protection against mortality caused by Edwardsiella ictaluri. Fish and Shellfish Immunology, 27(6), 773–776.
https://doi.org/10.1016/j.fsi.2009.08.012
Veenstra, K. A., Wang, T., Alnabulsi, A., Douglas, A., Russell, K. S., Tubbs, L., Arous, J. Ben, & Secombes, C. J. (2017). Analysis of adipose tissue immune gene expression after vaccination of rainbow trout with adjuvanted bacterins reveals an association with side effects. Molecular Immunology, 88, 89–98. https://doi.org/10.1016/j.molimm.2017.05.026
Veenstra, K. A., Wang, T., Russell, K. S., Tubbs, L., Ben Arous, J., & Secombes, C. J. (2021). MontanideTM ISA 763A VG and ISA 761 VG induce different immune pathway responses in rainbow trout (Oncorhynchus mykiss) when used as adjuvant for an Aeromonas salmonicida bacterin. Fish and Shellfish Immunology, 114, 171–183.
https://doi.org/10.1016/j.fsi.2021.04.024
Vinitantharat, S., Gravningen, K., & Greger, E. (1999). Fish vaccines. Advances in Veterinary Medicine, 41(C), 539–550. https://doi.org/10.1016/S0065-3519(99)80040-8
Wangkahart, E., Secombes, C. J., & Wang, T. (2019). Studies on the use of flagellin as an immunostimulant and vaccine adjuvant in fish aquaculture. Frontiers in immunology, 9, 3054. https://doi.org/10.3389/fimmu.2018.03054
Zou, J., & Secombes, C. J. (2016). The function of fish cytokines. Biology, 5(2), 23. https://doi.org/10.3390/biology5020023