Bào chế hệ vi hạt PLGA chứa hoạt chất luteolin-7-O-β-D-glucopyranoside và đánh giá hoạt tính kháng ung thư của chế phẩm
Abstract
PLGA nanoparticles loaded with luteolin-7-O-β-D-glucopyranoside (LUT/PLGA-NPs) were successfully prepared and evaluated for anti-cancer activity. The results showed that the LUT/PLGA-NPs had an average particle size in the range of 188 – 224 nm, zeta potential from – 70 mV to – 43 mV, and the drug release of up to 27.98 % and 74.80 % for 72 hours, at pH 7.4 and 5.3, respectively. This study indicated that LUT/PLGA-NPs had high stability, controlled release, and good dispersibility. Furthermore, LUT/PLGA-NPs exerted toxicity to cervical cancer cells (HeLa) and reduced toxicity to kidney embryonic cells. Therefore, the LUT/PLGA-NPs promise the possibility of natural compounds being applied in cancer therapy using nanotechnology.
Tóm tắt
Hệ vi hạt PLGA chứa hoạt chất luteolin-7-O-β-D-glucopyranoside (LUT/PLGA-NPs) đã được bào chế thành công và được thử nghiệm đánh giá hoạt tính kháng ung thư. Kết quả cho thấy hệ vi hạt LUT/PLGA-NPs có kích thước trung bình trong khoảng 188 – 224 nm, điện thế zeta từ – 70 mV đến – 43 mV, khả năng giải phóng hoạt chất đạt 27,98 % và 74,80 % trong 72 giờ khảo sát, tương ứng tại pH 7,4 và 5,3. Điều này cho thấy LUT/PLGA-NPs có tính ổn định cao, phóng thích có kiểm soát và phân tán tốt. Hơn thế nữa, khả năng gây độc đối với tế bào ung thư cổ tử cung (HeLa) và giảm thiểu độc tính đối với tế bào phôi thận bình thường của chế phẩm cũng được ghi nhận. Vì vậy, hệ vi hạt LUT/PLGA-NPs hứa hẹn là một liệu pháp điều trị tiềm năng của các hợp chất có nguồn gốc từ thiên nhiên đối với bệnh ung thư từ công nghệ nano.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Tài liệu tham khảo
Barrios, C. H. (2022). Global challenges in breast cancer detection and treatment. Breast, 62, S3-S6.doi: 10.1016/j.breast.2022.02.003
Bromberg, L., & Alakhov, V. (2003). Effects of polyether-modified poly (acrylic acid) microgels on doxorubicin transport in human intestinal epithelial Caco-2 cell layers. Journal of Controlled Release, 88, 11–22.
https://doi.org/10.1016/S0168-3659(02)00419-4
Chen, Y., Xu, T., Yang, X., Chu, W., Hu, S., & Yin, D. (2019). The toxic potentials and focus of disinfection byproducts based on the human embryonic kidney (HEK293) cell model. Science of The Total Environment, 664, 948–957.
https://doi.org/10.1016/J.SCITOTENV.2019.01.361
Chen, H., Yang W., Chen H., Liu, L., Gao, F., Yang, X., & Jiang, Q. (2009). Surface modification of Mitoxantrone-loaded PLGA nanospheres with chitosan. Colloids Surf B Biointerfaces, 73, 212–218.
https://doi.org/10.1016/j.colsurfb.2009.05.020
Chouhan, R., & Bajpai, A. (2009). Real-time in vitro studies of doxorubicin release from PHEMA nanoparticles. Journal of Nanobiotechnology, 7, 5–16. doi: 10.1186/1477-3155-7-5
Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S., & Mozafari, M. R. (2018). Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics, 10(2), 57. doi:10.3390/pharmaceutics100
Enas, M. E., Mattia, T., & Mahmoud E. S. (2019). Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/ poly (lactic‑co‑glycolic acid) micro and nanoparticles. Journal of Pharmaceutical Investigation, 49, 347–380.
https://doi.org/10.1007/s40005-019-00439-x
Eveen, A., Samah, A., Alaa, M. H., & Suhair, S. (2022). Rhoifolin loaded in PLGA nanoparticles alleviates oxidative stress and inflammation in vitro and in vivo. Biomater Science, 10(19), 5504-5519. doi: 10.1039/d2bm00309k
Fredenberg, S., Wahlgren, M., Reslow, M., & Axelsson A. (2011). The mechanisms of drug release in poly (lactic-co-glycolic acid)-based drug delivery systems-a review. International journal of pharmaceutics, 415(1-2), 34-52. doi: 10.1016/j.ijpharm.2011.05.049
Gajender, A. M., Ashwani, S., & Md. A. K. A. (2023). A Comprehensive Review of the Pharmacological Importance of Dietary Flavonoids as Hepatoprotective Agents. Evidence-Based Complementary and Alternative Medicine. doi: 10.1155/2023/4139117
Halder, A., Mukherjee, P., Ghosh, S., Mandal, S., Chatterji, U., & Mukherjee, A. (2018). Smart PLGA nanoparticles loaded with Quercetin: Cellular uptake and in vitro anticancer study. Materials Today: Proceedings, 5(3), 9698–9705. doi:10.1016/j.matpr.2017.10.156
Karthick, V., Panda, S., Kumar, V. G., Kumar, D., Shrestha, L. K., Ariga, K., Vasanth, K., Chinnathambi, S., Dhas, T. S., & Suganya, K. S. U. (2019). Quercetin-loaded PLGA microspheres induce apoptosis in breast cancer cells. Applied Surface Science, 487, 211–217. doi:10.1016/j.apsusc.2019.05.047
Kumar, A., & Dixit, C. K. (2017). Methods for characterization of nanoparticles. Kumar, A., & Dixit, C. K. Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids, (pp. 43–58). Elsevier. doi:10.1016/b978-0-08-100557-6.00003-1
Liu, Y., Wu, X., Mi, Y., Zhang, B., Gu, S., Liu, G., & Li, X. (2017). PLGA nanoparticles for the oral delivery of nuciferine: preparation, physicochemical characterization and in vitro/in vivo studies. Drug Delivery, 24(1), 443–451. doi:10.1080/10717544.2016.1261381
Maeda, H., Sawa, T., & Konno, T. (2001). Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. Journal of Controlled Release, 74, 47–61. doi: 10.1016/S0168-3659(01)00309-1
Mu, L., & Feng, S. S. (2003). A novel controlled release formulation for the anticancer drug paclitaxel (Taxol®): PLGA nanoparticles containing vitamin E TPGS. Journal of Controlled Release, 86(1), 3-48. https://doi.org/10.1016/S0168-3659(02)00320-6
Nguyen, T. Q. C., Binh, T. D., Kusunoki, R., Pham, T. L. A., Nguyen, Y. D. H., Nguyen, T. T., Kanaori, K, & Kamei, K. (2020). Effects of Launaea sarmentosa Extract on Lipopolysaccharide-Induced Inflammation via Suppression of NF-κB/MAPK Signaling and Nrf2 Activation. Nutrients, 12(9), 2586. doi: 10.3390/nu12092586
Pereira, M. C., Oliveira, D. A., Hill, L. E., Zambiazi, R. C., Borges, C. D., Vizzotto, M., Mertens-Talcott, S., Talcott, S., & Gomes, C. L. (2018). Effect of nanoencapsulation using PLGA on antioxidant and antimicrobial activities of guabiroba fruit phenolic extract. Food Chemistry, 240, 396–404.
https://doi: 10.1016/j.foodchem.2017.07.144
Shaobing, Z., & Xianmo, D. (2002). In vitro degradation characteristics of poly-DL-lactide– poly(ethylene glycol) microspheres containing human serum albumin. Reactive & Functional Polymers, 51, 93-100. https://doi.org/10.1016/S1381-5148(02)00029-9
Visan, A.I., & Negut, I. (2024). Development and Applications of PLGA hydrogels for sustained delivery of therapeutic agents. Gels, 10, 1-33.
https://doi.org/ 10.3390/gels10080497
Wang, L., Wang, P., Liu, Y., Mustafa, M. M. A., Li, R., Zhang, W., Zhan, Y., & Li, Z (2024). The Effect of Different Factors on poly(lactic-co-glycolic acid) Nanoparticle Properties and Drug Release Behaviors When Co-Loaded with Hydrophilic and Hydrophobic Drugs. Polymers, 16, 865.
Yadav, N., Tripathi, A.K., Parveen, A., Parveen, S., & Banerjee, M. (2022). PLGA-Quercetin nano-formulation inhibits cancer progression via Mitochondrial dependent Caspase-3,7 and independent FoxO1 activation with concomitant PI3K/AKT suppression. Pharmaceutics,14(7),1-16. doi: 10.3390/pharmaceutics14071326
Yang, B., Mao, Y., Zhang, Y., Hao, Y., Guo, M., Li, B., & Peng, H. (2023). HA-Coated PLGA nanoparticles loaded with Apigenin for colon cancer with high expression of CD44. Molecules, 28, 1-13. https://doi.org/10.3390/ molecules28227565
Žemlička, L., Fodran, P., Lukeš, V., Vagánek, A., Slováková, M., Staško, A., Dubaj, T., Liptaj, T., Karabín, M., Birošová, L., & Rapta, P. (2014). Physicochemical and biological properties of luteolin-7-O-β-D-glucoside (cynaroside) isolated from Anthriscus sylvestris (L.) Hoffm. Monatshefte Für Chemie - Chemical Monthly, 145(8), 1307–1318. doi:10.1007/s00706-014-1228-3