Phân tích thực trạng và các yếu tố tác động đến đảo nhiệt đô thị tại thành phố Cần Thơ
Abstract
The study aims to assess the current situation of urban heat islands (UHI) in Can Tho city using Landsat 8 images. In addition, the methods of exploratory factor analysis (EFA) and multivariate linear regression models were ultilized to identify the impact factors affecting UHI through feedback from 150 residents. The research results indicated that the highest UHI distribution is concentrated in areas with a high density of impervious surfaces, especially industrial clusters. In contrast, low UHI distribution is recorded in areas with a high density of green cover or in canals and rivers. The results of the multivariate regression analysis show that the urban heat island is affected by about 87,9% by three main factors including nature, infrastructure, and society. The research results also provide information for planners in proposing solutions to limit the impact of urban heat islands and protect the environment toward sustainable urban development.
Tóm tắt
Nghiên cứu được thực hiện nhằm đánh giá thực trạng đảo nhiệt đô thị (UHI) tại thành phố Cần Thơ sử dụng ảnh Landsat 8, đồng thời xác định các yếu tố ảnh hưởng đến đảo nhiệt thông qua phản hồi của 150 người dân sử dụng phương pháp phân tích nhân tố khám phá EFA và mô hình hồi quy tuyến tính đa biến. Kết quả nghiên cứu cho thấy phân bố UHI cao nhất (4 đến 5oC) tập trung ở các khu vực có mật độ bề mặt không thấm cao đặt biệt là khu cụm công nghiệp, phân bố UHI thấp được ghi nhận ở các khu vực có mật độ cây xanh che phủ cao hoặc tại các kênh sông rạch. Kết quả phân tích hồi quy đa biến cho thấy đảo nhiệt đô thị bị ảnh hưởng 87,9% bởi các yếu tố về tự nhiên, hạ tầng và xã hội. Kết quả nghiên cứu cũng cung cấp thông tin cho các nhà quy hoạch nhằm đề xuất các giải pháp hạn chế ảnh hưởng của đảo nhiệt đô thị, bảo vệ môi trường trong xây dựng đô thị bền vững.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Tài liệu tham khảo
Bliss, C. I. (1934). The method of probits. Science, 79(2037), 38-39. https://doi.org/10.1126/science.79.2037.38
Can Tho City Statistical Office. (2020). Statistical Yearbook of Bonds in 2019 (in Vietnamese).
Cronbach, L. (1951). Coefficient alpha and the internal structure of tests. Psychomerika,16, 297-334. https://doi.org/10.1007/BF02310555
Field, A. (2009). Logistic regression. Discovering statistics using SPSS, 264(1), 315. https://doi.org/10.1201/9781420075779-10
Ghorbanian, A., Zaghian, S., Asiyabi, R. M., Amani, M., Mohammadzadeh, A., & Jamali, S. (2021). Mangrove ecosystem mapping using Sentinel-1 and Sentinel-2 satellite images and random forest algorithm in Google Earth Engine. Remote Sensing, 13(13), 2565. https://doi.org/10.3390/rs13132565
Hair, J. F., Anderson, R. E., Tatham R. L., & Black, W. C. (1998). Multivariate Data Analysis (5th ed.). New York: Macmillan Publishing Company.
Hair, J. F., Black, W. C., Babin, B. J., Anderson. R. E., & Tatham, R. L. (2006). Multivariate data analysis(6th ed.). Upper Saddle River, NJ: Pearson University Press
Hoang, T., & Chu, N. N. M. (2008). Analysis of research data with SPSS (Used with SPSS versions 11.5, 13, 14, 15, 16)-Volume 1. Hong Duc Publishing House (in Vietnamese).
Likert, R. A. (1932). A technique for measurements a attitudes. Archives of Psychology.
Long, J., Napton, D., Giri, C., & Graesser, J. (2014). A mapping and monitoring assessment of the Philippines' mangrove forests from 1990 to 2010. Journal of Coastal Research, 30(2), 260-271. https://doi.org/10.2112/JCOASTRES-D-13-00057.1
Norris, M., Lecavalier, L. J., & Autism, D. D. (2010). Evaluating the Use of Exploratory Factor Analysis in Developmental Disability Psychological Research. Journal of Autism and Developmental Disorders, 40(1), 8-20.
Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory (3rd ed.). New York: McGraw-Hill.
Nguyen, C. T., Nguyen, D. T. H., Sanwit, I., Pariwate, V., & Vo, M. Q. (2019). Analysis of Factors Affecting Urban Heat Island Phenomenon in Bangkok Metropolitan Area, Thailand. VNU Journal of Science: Earth and Environmental Sciences, 35(1) (in Vietnamese). https://doi.org/10.25073/2588-1094/vnuees.4355
Nguyen, D. K., & Phan, D. K. (2022). Monitoring of urban surface heat islands in Can Tho city in the period of 2014-2020. Can Tho University Science Journal, 58(4), 35-44 (in Vietnamese). https://doi.org/10.22144/ctu.jvn.2022.161
Nguyen, D. K., Phan, D. K., & Nguyen, L. T. (2022). Analysis of factors affecting urban heat islands in Can Tho city (Grassroots science and technology research project). Can Tho University (in Vietnamese).
Nguyen, S. T., & Bui, T. X. (2018). Decadal assessment of urban sprawl and its effects on local temperature using Landsat data in Cantho city, Vietnam. Sustainable Cities and Society, 36, 81-91.
https://doi.org/10.1016/j.scs.2017.10.010
Nguyen, T. N. (2009). Remote sensing facilities. Agricultural Publishing House, Hanoi (in Vietnamese).
Nguyen, T.T.T, & Waibel, M. (2021). Urban heat islands and their implications for Vietnam. Vietnam Country Report "Environmental Policy in Vietnam",(2), 271-281 (in Vietnamese).
Pham, D. T., & Yoshino, K. (2016). Impacts of mangrove management systems on mangrove changes in the Northern Coast of Vietnam. Tropics, 24(4), 141-151. https://doi.org/10.3759/tropics.24.141
Pham, L. (2018). SPSS user guide (in Vietnamese).
Ranagalage, M., Dissanayake, D. M. S. L. B., Murayama, Y., Zhang, X., Estoque, R. C., Perera, E. N. C., & Morimoto, T. (2018). Quantifying surface urban heat island formation in the world heritage tropical mountain city of Sri Lanka. ISPRS International Journal of Geo-Information, 7(9), 341. https://doi.org/10.3390/ijgi7090341
Streiner, D. L. (2003). Starting at the beginning: an introduction to coefficient alpha and internal consistency. Journal of Personality Assessment, 80(1), 99-103.
Tilahun, A., & Teferie, B. (2015). Accuracy assessment of land use land cover classification using Google Earth. American Journal of Environmental Protection, 4(4), 193-198. https://doi.org/10.11648/j.ajep.20150404.14
Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote sensing of Environment, 8(2), 127-150. https://doi.org/10.1016/0034-4257(79)90013-0
Tran, A. V., , Tran, H. H., Le, N. T., Pham, H.T. T., Tran, A. Q., Nguyen, A. T. V., Pham, T.T., & Tran, Q. T. (2023). Research on some machine learning methods in establishing a surface cover map of Ca Mau province on the Google Earth Engine platform. Journal of Surveying and Cartography, (55), 18-26 (in Vietnamese). https://doi.org/10.54491/jgac.2023.55.671
Tran, V. T. (2006). Application of thermal remote sensing to survey the characteristic urban surface temperature with the distribution of carpet types in Ho Chi Minh City. Journal of Science and Technology Development, 8, 70-74 (in Vietnamese).
Tran, V. T., Ha, B. D. X., Dinh, P. T. K., Nguyen, M. T. T., & Dang, N. T. M. (2017). Characteristics of the thermal environment and developments of surface urban heat islands in the North of Ho Chi Minh City. Science Journal of Can Tho University, (49), 11-20 (in Vietnamese). https://doi.org/10.22144/jvn.2017.002
Trong, H., & Ngoc, C. N. M. (2008). Study material Research data analysis with SPSS 2008 volume 1.
USGS. (2016). Landsat 8 (L8) Data Users Handbook (LSDS-1574 version 2.0). USGS Landsat User Services. U.S. Geological Survey.
Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote sensing of environment, 86(3), 370-384. https://doi.org/10.1016/S0034-4257(03)00079-8
Wang, H., Zhang, Y., Tsou, J. Y., & Li, Y. (2017). Surface urban heat island analysis of Shanghai (China) based on the change of land use and land cover. Sustainability, 9(9), 1538. https://doi.org/10.3390/su9091538
Weng, Q. (2009). Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS Journal of Photogrammetry and Remote Sensing, 64(4), 335-344. https://doi.org/10.1016/j.isprsjprs.2009.03.007
Xu, Y., & Shen, Y. (2013). Reconstruction of the land surface temperature time series using harmonic analysis. Computers & geosciences, 61, 126-132. https://doi.org/10.1016/j.cageo.2013.08.009
Ya, M., Kuang, Y., & Huang, N. (2010). Coupling urbanization analyses for studying urban thermal environment and its interplay with biophysical parameters based on TM/ETM+ imagery. International Journal of Applied Earth Observation and Geoinformation, 12(2), 110–118. https://doi.org/10.1016/j.jag.2009.12.002
Yahua, Q. (2011). Interstate Fiscal Disparities in America (2nd ed.). New York and London:Routledge.