Huỳnh Đại Phú * , Trần Đức Mạnh , Mai Hữu Xuân Nguyễn Thị Kim Phượng

* Tác giả liên hệ (hdphu@hcmut.edu.vn)

Abstract

In this study, star-shape polycaprolactone triol (stPCL) was successfully synthesized via ring-opening polymerization of ε-caprolactone (CL), using glycerol as the initiaton and and Sn(Ot)2 as the catalyst. The molecular weight of stPCL, determined by gel permeation chromatography (GPC), was found to be around 1.600Da. The structure of stPCL was characterized using hydrogen nuclear magnetic resonance (1H-NMR) and fourier transform infrared spectroscopy (FTIR). This stPCL product was used as the main raw material for synthesizing thermosetting polyurethane (PU) aimed at biomedical applications.

Keywords: Biodegradable, biopolymer, poly ε-caprolactone, polyurethane

Tóm tắt

Trong nghiên cứu này, polycaprolactone triol (stPCL) hình sao đã được tổng hợp thành công thông qua phản ứng trùng hợp mở vòng của ε-caprolactone (CL), sử dụng glycerol làm chất khởi đầu và Sn(Ot)2 làm chất xúc tác. Khối lượng phân tử của stPCL được xác định bằng phương pháp sắc ký gel (GPC,) nằm trong khoảng 1.600Da. Cấu trúc của stPCL được xác định bằng phổ cộng hưởng từ hạt nhân (1H-NMR) và quang phổ hồng ngoại biến đổi Fourier (FTIR). Sản phẩm stPCL này được sử dụng làm nguyên liệu chính để tổng hợp polyurethane (PU) nhiệt rắn định hướng ứng dụng trong lĩnh vực y sinh.

Từ khóa: Poly ε-caprolactone, polymer phân hủy sinh học, polymer sinh học, polyurethane

Article Details

Tài liệu tham khảo

Chelike, D. K., & Thangavelu, S. A. G. (2023). Biodegradable isocyanate free polyurethanes films via noncatalytic route: facile modified polycaprolactone triol and biobased diamine as precursors. CRS Advanced. 13, 309-319. Doi: 10.1039/d2ra05710g

Chen, Y. J. (2014). Bioplastics and their role in achieving global sustainability. Journal of Chemical and Pharmaceutical Research, 6(1), 226–231. www.jocpr.com (27.08.2024)

Giacomo D., Alberto, V., Daniele, B., Alberto, F., & Orietta, M. (2021). Synthesis and characterization of a novel star polycaprolactone to be applied in the development of graphite nanoplates-based nanopapers. Reactive and Functional Polymers. 167, 105019-105027. Doi:10.1016/j.reactfunctpolym.2021.105019

Guarino, V., Gentile, G., Sorrentino, L., & Ambrosio, L. (2017). Polycaprolactone: Synthesis, Properties, and Applications. Encyclopedia of Polymer Science and Technology, 4, 1–36. Doi:10.1002/0471440264.PST658

Khine Y. M., Halima, B. G., Thorsten, P., Martin, B., & Chaobin, H. (2011). Star-shaped POSS-polycaprolactone polyurethanes and their shape memory performance. Journal of Materials Chemistry. 21, 2827-2836. Doi: 10.1039/c0jm04459h

Kouparitsas, I. K., Mele, E., & Ronca, S. (2019). Synthesis and electrospinning of polycaprolactone from an aluminium-based catalyst: Influence of the ancillary ligand and initiators on catalytic efficiency and fibre structure. Polymers, 11(4), 677-684. Doi.: 10.3390/polym11040677

Kowalski, A., Duda, A., & Penczek, S. (2000). Mechanism of Cyclic Ester Polymerization Initiated with Tin(II) Octoate. 2. 1 Macromolecules Fitted with Tin(II) Alkoxide Species Observed Directly in MALDI-TOF Spectra. Macromolecules, 33(3), 689–695. Doi:10.1021/ma9906940

Marijana, P., Marija, S. N., Sanja, S., Jasmina, N.-R., Sanja, J., Aleksandar, P., & Jasna, D. (2020). Hydrolytic degradation of star-shaped poly(ε-caprolactone)s with different number of arms and their cytotoxic effects. Journal of Bioactive and Compatible Polymers, 35(6), 1-21. Doi: 10.1177/0883911520951826

Natjaya, E., Chomdao, S., Hiroharu, A., &
Chantiga, C (2022). Bioactivity of star-shaped polycaprolactone/chitosan composite hydrogels for biomaterials. International Journal of Biological Macromolecules. 212, 420-431. Doi: 10.1016/j.ijbiomac.2022.05.139

Nikoletti, S., Leslie, G., Sylvia Gandossi, F., Geoffrey Coombs, B., Roger Wilson, Pgd., Churchlands, D., Australia, W., & South Wales, N. (1999). A prospective, randomized, controlled trial comparing transparent polyurethane and hydrocolloid dressings for central venous catheters. American Journal of Infection Control, 27(6), 488-496. Doi: Doi: 10.1016/S0196-6553(99)70026-X

Savannah M., Francesca, D. F., Sheree, E. H., Katie, E., & Rachael, Z. Murray. (2021). Skin Wound Healing: Normal Macrophage Function and Macrophage Dysfunction in Diabetic Wounds. Molecules, 26, 4917- 4938. Doi: 10.3390/ molecules26164917

Selvaraj, D., Viswanadha, V. P., & Elango, S. (2015). Wound dressings – a review. BioMedicine, 5(4), 24-28. Doi: 10.7603/s40681-015-0022-9

Sophie W., Luc A. (2021). Biobased polyurethanes for biomedical applications. Bioactive Materials, 6, 1083-1106. Doi: 10.1016/j.bioactmat.2020.10.002

Storey, R. F., & Sherman, J. W. (2002). Kinetics and mechanism of the stannous octoate-catalyzed bulk polymerization of ε-caprolactone. Macromolecules, 35(5), 1504–1512. Doi: 10.1021/ma010986c

Wendels, S., & Avérous, L. (2021). Biobased polyurethanes for biomedical applications. Bioactive Materials, 6(4), 1083–1106. Doi: Doi: 10.1016/j.bioactmat.2020.10.002

Woodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer - Polycaprolactone in the 21st century. Progress in Polymer Science, 35(10), 1217–1256. Doi: 10.1016/j.progpolymsci.2010.04.002