Lý Khôi Nguyên , Trần Chí Linh Đái Thị Xuân Trang *

* Tác giả liên hệ (dtxtrang@ctu.edu.vn)

Abstract

This study aimed to isolate endophytic bacteria (EB) from Clinacanthus nutans with the ability to synthesize compounds possessing antioxidant and anti-inflammatory properties. The antioxidant activity of extracellular extracts (EE) from EB was evaluated based on total phenolic content, total polyphenol content, DPPH free radical scavenging, total antioxidant capacity, and reducing power. Anti-inflammatory activity was assessed through inhibition of bovine serum albumin denaturation. The study isolated 24 EB strains that could synthesize extracellular polyphenol compounds with antioxidant and anti-inflammatory properties. Total polyphenol content (TPC) ranged from 94.32 to 2284.44 mg GAE/mL EE, and total flavonoid content (TFC) ranged from 5.35 to 99.69 mg QE/mL EE. Antioxidant activity measured by DPPH, reducing power (RP), and total antioxidant capacity (TAC) ranged from 0.13 to 1067.36 mg vitamin C equivalent/mL EE. Anti-inflammatory content ranged from 0.32 to 0.46 mg diclofenac equivalent/mL EE. The three EB strains with consistently high activity across all parameters were identified as Bacillus sp. CN-R1, Enterobacter sp. CN-R15, and Enterobacter sp. CN-L7.

Keywords: Antioxidant, anti-inflammatory, Clinacanthus nutans, endophytic bacteria

Tóm tắt

Mục tiêu nghiên cứu là phân lập vi khuẩn nội sinh (VKNS) có khả năng sinh tổng hợp các hợp chất chống oxy hóa và kháng viêm ở cây Mảnh Cộng (Clinacanthus nutans). Hoạt tính chống oxy hóa của dịch chiết ngoại bào (DCNB) từ VKNS được đánh giá qua hàm lượng polyphenol, flavonoid tổng số, khả năng trung hòa gốc tự do DPPH, khả năng chống oxy hóa tổng số và năng lực khử. Khả năng kháng viêm được xác định qua ức chế sự biến tính của albumin huyết thanh bò. Kết quả đã phân lập được 24 dòng VKNS có khả năng sinh tổng hợp các hợp chất polyphenol ngoại bào, chống oxy hóa và kháng viêm. Hàm lượng TPC từ 94,32 đến 2284,44 mg GAE/mL DCNB, TFC từ 5,35 đến 99,69 mg QE/mL DCNB. Khả năng chống oxy hóa bởi phương pháp DPPH, RP và TAC từ 0,13 đến 1067,36 mg vitamin C tương đương/mL DCNB. Hàm lượng chất kháng viêm từ 0,32 đến 0,46 mg diclofenac tương đương/mL DCNB. Ba dòng VKNS có hoạt tính cao đồng đều ở các chỉ tiêu khảo sát là Bacillus sp. CN-R1, Enterobacter sp. CN-R15 và Enterobacter sp. CN-L7.

Từ khóa: Clinacanthus nutans, chống oxy hoá, kháng viêm, Mảnh Cộng, vi khuẩn nội sinh

Article Details

Tài liệu tham khảo

Ambade, A., & Mandrekar, P. (2012). Oxidative stress and inflammation: essential partners in alcoholic liver disease. International Journal of Hepatology, 2012(1), 853175. https://doi.org/10.1155/2012/853175

Anjum, N., & Chandra, R. (2015). Endophytic bacteria: optimization of isolation procedure from various medicinal plants and their preliminary characterization. Asian Journal of Pharmaceutical and Clinical Research, 8(4), 233-238.

Bogas, A. C., Ferreira, A. J., Araújo, W. L., Astolfi-Filho, S., Kitajima, E. W., Lacava, P. T., & Azevedo, J. L. (2015). Endophytic bacterial diversity in the phyllosphere of Amazon Paullinia cupana associated with asymptomatic and symptomatic anthracnose. Springerplus, 4, 1-13.
https://doi.org/10.1186/s40064-015-1037-0

Castronovo, L. M., Vassallo, A., Mengoni, A., Miceli, E., Bogani, P., Firenzuoli, F., Fani, R. & Maggini, V. (2021). Medicinal plants and their bacterial microbiota: a review on antimicrobial compounds production for plant and human health. Pathogens, 10(2), 106. https://doi.org/10.3390/pathogens10020106

Deng, Z. S., Zhao, L. F., Kong, Z. Y., Yang, W. Q., Lindström, K., Wang, E. T., & Wei, G. H. (2011). Diversity of endophytic bacteria within nodules of the Sphaerophysa salsula in different regions of Loess Plateau in China. FEMS microbiology Ecology, 76(3), 463-475. https://doi.org/10.1111/j.1574-6941.2011.01063.x

Elmagzob, A. A. H., Ibrahim, M. M., & Zhang, G. F. (2019). Seasonal diversity of endophytic bacteria associated with Cinnamomum camphora (L.) Presl. Diversity, 11(7), 112. https://doi.org/10.3390/d11070112

Emmendoerffer, A., Hecht, M., Boeker, T., Mueller, M., & Heinrich, U. (2000). Role of inflammation in chemical-induced lung cancer. Toxicology letters, 112, 185-191. https://doi.org/10.1016/S0378-4274(99)00285-4

Fu, L., Xu, B. T., Xu, X. R., Gan, R. Y., Zhang, Y., Xia, E. Q., & Li, H. B. (2011). Antioxidant capacities and total phenolic contents of 62 fruits. Food Chemistry, 129(2), 345-350. https://doi.org/10.1016/j.foodchem.2011.04.079

G.C. Bag, P.G. Devi, T. Bhaigyabati (2015). Assessment of Total Flavonoid Content and Antioxidant Activity of Methanolic Rhizome Extract of Three Hedychium Species of Manipur Valley, Int. J. Pharm. Sci. Rev. Res., 30(1), 154-159.

Gouda, S., Das, G., Sen, S. K., Shin, H. S., & Patra, J. K. (2016). Endophytes: a treasure house of bioactive compounds of medicinal importance. Frontiers in Microbiology, 7, 219261. https://doi.org/10.3389/fmicb.2016.01538

Tran, H. T., & Nguyen, H. H. (2016). Isolation and characterization of endophytic bacteria in Mimosa pudica L. collected in Tra Vinh province.Can Tho University Journal of Science, 46, 23-29 (in Vietnamese). https://doi.org/10.22144/ctu.jvn.2016.538

Hucker, G. J. & Conn, H. J. (1923). Methods of Gram Staining. New York State Agricultural Experiment Station Technical Bulletin, 93, 3-37.

Leelaprakash, G., & Dass, S. M. (2011). Invitro anti-inflammatory activity of methanol extract of Enicostemma axillare. International Journal of Drug Development and Research, 3(3), 189-196.

Oyaizu (1986). Studies on product of browning reaction prepared from glucose amine, Jap J Nutr, 44, 307–315. https://doi.org/10.5264/eiyogakuzashi.44.307

Pandey, K. B., Mishra, N., & Rizvi, S. I. (2009). Protective role of myricetin on markers of oxidative stress in human erythrocytes subjected to oxidative stress. Natural Product Communications, 4(2), 1934578X0900400211. https://doi.org/10.1177/1934578X0900400211

Phong, H. X., Ngan, T. T. K., Thanh, N. N., Long, B. H. D., & Viet, N. T. (2023). Antioxidant activities and phytochemical screening of some medicinal species harvested in the Mekong Delta, Vietnam. AIP Conf. Proc., 2764(1), 020004.
https://doi.org/10.1063/5.0144097

Phongsopitanun, W., Sripreechasak, P., Rueangsawang, K., Panyawut, R., Pittayakhajonwut, P., & Tanasupawat, S. (2020). Diversity and antimicrobial activity of culturable endophytic actinobacteria associated with Acanthaceae plants. ScienceAsia, 46, 288-296. http://dx.doi.org/10.2306/scienceasia1513-1874.2020.036

Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical Biochemistry, 269(2), 337-341. https://doi.org/10.1006/abio.1999.4019

Ryan, R. P., Germaine, K., Franks, A., Ryan, D. J., & Dowling, D. N. (2008). Bacterial endophytes: recent developments and applications. FEMS microbiology Letters, 278(1), 1-9. https://doi.org/10.1111/j.1574-6968.2007.00918.x

Shah, M., Parveen, Z., & Khan, M. R. (2017). Evaluation of antioxidant, anti-inflammatory, analgesic and antipyretic activities of the stem bark of Sapindus mukorossi. BMC complementary and alternative medicine, 17, 1-16. https://doi.org/10.1186/s12906-017-2042-3

Wang, S., Zheng, Y., Gu, C., He, C., Yang, M., Zhang, X., Guo,J., Zhao,H., & Niu, D. (2018). Bacillus cereus AR156 activates defense responses to Pseudomonas syringae pv. tomato in Arabidopsis thaliana similarly to flg22. Molecular Plant-Microbe Interactions, 31(3), 311-322. https://doi.org/10.1094/MPMI-10-17-0240-R

Wu, W., Feng, Y., & Zong, Z. (2020). Precise species identification for Enterobacter: a genome sequence-based study with reporting of two novel species, Enterobacter quasiroggenkampii sp. nov. and Enterobacter quasimori sp. nov. MSystems, 5(4), 10-1128. https://doi.org/10.1128/mSystems.00527-20

Dutta, S., Rani, T. S., & Podile, A. R. (2013). Root exudate-induced alterations in Bacillus cereus cell wall contribute to root colonization and plant growth promotion. PloS One, 8(10), e78369. https://doi.org/10.1371/journal.pone.0078369

Halverson, L. J., Clayton, M. K., & Handelsman, J. (1993). Variable stability of antibiotic‐resistance markers in Bacillus cereus UW85 in the soybean rhizosphere in the field. Molecular Ecology, 2(2), 65-78. https://doi.org/10.1111/j.1365-294X.1993.tb00001.x

Sharma, O. P., & Bhat, T. K. (2009). DPPH antioxidant assay revisited. Food Chemistry, 113(4), 1202-1205. https://doi.org/10.1016/j.foodchem.2008.08.008

Shim, S. Y., Aziana, I., & Khoo, B. Y. (2013). Perspective and insight on Clinacanthus nutans Lindau in traditional medicine. International Journal of Integrative Biology, 14(1), 7-9.

Lapidus, A., Goltsman, E., Auger, S., Galleron, N., Ségurens, B., Dossat, C., Land, M.L., Broussolle, V., Brillard, J., Guinebretiere, M.H., Sanchis, V., Nguen-the, C., Lereclus, D., Richardson, P., Wincker, P., Weissenbach, J., Ehrlich, S. D., & Sorokin, A. (2008). Extending the Bacillus cereus group genomics to putative food-borne pathogens of different toxicity. Chemico-Biological Interactions, 171(2), 236-249. https://doi.org/10.1016/j.cbi.2007.03.003

Liu, Y., Lai, Q., Göker, M., Meier-Kolthoff, J. P., Wang, M., Sun, Y., Wang, L. & Shao, Z. (2015). Genomic insights into the taxonomic status of the Bacillus cereus group. Scientific reports, 5(1), 14082. https://doi.org/10.1038/srep14082

Strobel, G., & Daisy, B. (2003). Bioprospecting for microbial endophytes and their natural products. Microbiology and Molecular Biology Reviews, 67(4), 491-502. https://doi.org/10.1128/mmbr.67.4.491-502.2003

Nguyen, V. H. A., & Nguyen, H. H. (2019). Isolation and screening of antibacterial endophytic bacteria from Moringa oliefera Lam. in Chau Thanh district, Dong Thap province. Can Tho University Journal of Science, 55(2), 81-88 (in Vietnamese). https://doi.org/10.22144/ctu.jsi.2019.047

Walitang, D. I., Kim, C. G., Kim, K., Kang, Y., Kim, Y. K., & Sa, T. (2018). The influence of host genotype and salt stress on the seed endophytic community of salt-sensitive and salt-tolerant rice cultivars. BMC Plant Biology, 18(1), 1-16. https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-018-1261-1