Nguyễn Thị Nhật Hằng , Nguyễn Thành Tiên , Dương Thị Huyền , Nguyễn Thanh Sĩ Phạm Vũ Nhật *

* Tác giả liên hệ (nhat@ctu.edu.vn)

Abstract

The density functional theory calculations are employed to elucidate the adsorption behaviours of mercaptopurine (MP) and thioguanine (TG) drugs on the gold surface, using Au6 cluster as a model reactant. The PBE functional in combination with the effective core potential cc-pVTZ-PP basis set for gold atoms and cc-pVTZ basis set for nonmetals are used to investigated geometric structures, thermodynamic parameters and electronic properties of the obtained complexes. The IEF-PCM model with water solvent is applied to include the effect of biological environment on the interactions. The computed results show that the binding is dominated by a covelent bond Au−S and in part by electrostatic effects, namely a hydrogen bond contribution NH∙∙∙Au. In addition, the drug binding to gold clusters is a reversible process and a drug release mechanism was also clarified. Accordingly, the drugs are willing to separate from the gold surface due to either a slight change of pH in tumor cells or the presence of cysteine residues in protein matrices. In particular, the surface-enhanced Raman scattering (SERS) phenomenon of these molecules adsorbed on the Au surfaces are also elucidated.

Keywords: Au cluster, DFT, mercaptopurine, SERS, thioguanine, drug delivery

Tóm tắt

Các phép tính DFT (lý thuyết hàm mật độ) được sử dụng để làm sáng tỏ bản chất của quá trình hấp phụ các phân tử thuốc mercaptopurine (MP) và thioguanine (TG) trên bề mặt vàng, sử dụng Au6 cluster làm mô hình phản ứng. Phiếm hàm PBE kết hợp với bộ cơ sở cc-pVDZ-PP cho Au6 và cc-pVTZ cho các phân tử thuốc được sử dụng để khảo sát cấu trúc hình học, các thông số nhiệt động và tính chất điện tử của các phức chất thu được. Mô hình IEF-PCM với dung môi nước được sử dụng để đánh giá sự ảnh hưởng của môi trường sinh học lên quá trình tương tác. Các kết quả tính toán cho thấy rằng liên kết được quyết định bởi liên kết cộng hóa trị Au−S và một phần bởi hiệu ứng tĩnh điện, cụ thể là liên kết hydro −NH∙∙∙Au. Ngoài ra, sự hấp phụ là quá trình thuận nghịch và cơ chế giải phóng thuốc khỏi bề mặt Au6 cũng được khảo sát. Theo đó, các phân tử thuốc dễ dàng tách khỏi Au6 do sự thay đổi nhỏ của pH trong tế bào khối u hoặc sự hiện diện của cysteine ​​trong protein. Đặc biệt, hiện tượng tán xạ Raman tăng cường bề mặt (SERS) của chúng trên bề mặt kim loại Au cũng được làm sáng tỏ.

Từ khóa: Au cluster, DFT, dẫn truyền thuốc, mercaptopurine, SERS, thioguanine

Article Details

Tài liệu tham khảo

Achar, S., & Puddephatt, R. J. (1994). Organoplatinum dendrimers formed by oxidative addition. Angewandte Chemie International Edition, 33(8), 847-849.

Ajnai, G., Chiu, A., Kan, T., Cheng, C. C., Tsai, T. H., & Chang, J. (2014). Trends of gold nanoparticle-based drug delivery system in cancer therapy. Journal of Experimental & Clinical Medicine, 6(6), 172-178.

Akhter, S., Ahmad, I., Ahmad, M. Z., Ramazani, F., Singh, A., Rahman, Z., & Kok, R. J. (2013). Nanomedicines as cancer therapeutics: Current status. Current Cancer Drug Targets, 13(4), 362-378.

Austin, L. A., Mackey, M. A., Dreaden, E. C., & El-Sayed, M. A. (2014). The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Archives of Toxicology, 88(7), 1391-1417.

Bao-Zong, L. (2004). DFT calculations on 6-thiopurine tautomers. Acta Chimica Sinica, 62(11), 1075-1079.

Bauman, S. J., Brawley, Z. T., Darweesh, A. A., & Herzog, J. B. (2017). Substrate oxide layer thickness optimization for a dual-width plasmonic grating for surface-enhanced Raman spectroscopy (SERS) biosensor applications. Sensors, 17(7), 1530.

Bazylewski, P., Divigalpitiya, R., & Fanchini, G. (2017). In situ Raman spectroscopy distinguishes between reversible and irreversible thiol modifications in L-cysteine. RSC Advances, 7(5), 2964-2970.

Brar, S. K., & Verma, M. (2011). Measurement of nanoparticles by light-scattering techniques. Trends in Analytical Chemistry, 30(1), 4-17.

Choi, S., Dickson, R. M., & Yu, J. (2012). Developing luminescent silver nanodots for biological applications. Chemical Society Reviews, 41(5), 1867-1891. doi:10.1039/c1cs15226b

Cialla, D., Pollok, S., Steinbrücker, C., Weber, K., & Popp, J. (2014). SERS-based detection of biomolecules. Nanophotonics, 3(6), 383-411.

Cordero, E., Korinth, F., Stiebing, C., Krafft, C., Schie, I. W., & Popp, J. (2017). Evaluation of shifted excitation Raman difference spectroscopy and comparison to computational background correction methods applied to biochemical Raman spectra. Sensors, 17(8), 1724.

Demurtas, M., & Perry, C. C. (2014). Facile one-pot synthesis of amoxicillin-coated gold nanoparticles and their antimicrobial activity. Gold bulletin, 47, 103-107.

Eckhardt, S., Brunetto, P. S., Gagnon, J., Priebe, M., Giese, B., & Fromm, K. M. (2013). Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine. Chemical Reviews, 113(7), 4708-4754. doi:https://doi.org/10.1021/cr300288v

Ensafi, A. A., & Karimi‐Maleh, H. (2012). Determination of 6‐mercaptopurine in the presence of uric acid using modified multiwall carbon nanotubes‐TiO2 as a voltammetric sensor. Drug Testing and Analysis, 4(12), 970-977.

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams, Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery Jr., J. A., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B., & Fox, D. J. (2016). Gaussian 16 Rev. B.01. Wallingford, CT.

Ghosh, P., Han, G., De, M., Kim, C. K., & Rotello, V. M. (2008). Gold nanoparticles in delivery applications. Advanced Drug Delivery Reviews, 60(11), 1307-1315.

Gwinn, E., Schultz, D., Copp, S. M., & Swasey, S. (2015). DNA-protected silver clusters for nanophotonics. Nanomaterials (Basel), 5(1), 180-207. doi:10.3390/nano5010180

Hainfeld, J. F., Slatkin, D. N., Focella, T. M., & Smilowitz, H. M. (2005). Gold nanoparticles: A new X-ray contrast agent. British Journal of Radiology, 79, 248-253.

Itoh, T., Yoshida, K., Biju, V., Kikkawa, Y., Ishikawa, M., & Ozaki, Y. (2007). Second enhancement in surface-enhanced resonance Raman scattering revealed by an analysis of anti-Stokes and Stokes Raman spectra. Physical Review B, 76(8), 085405.

Javarsineh, S., Vessally, E., Bekhradnia, A., Hosseinian, A., & Ahmadi, S. (2018). A computational study on the purinethol drug adsorption on the AlN nanocone and nanocluster. Journal of Cluster Science, 29(4), 767-775.

Jeanmaire, D. L., & Van Duyne, R. P. (1977). Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 84(1), 1-20.

Jensen, L., Aikens, C. M., & Schatz, G. C. (2008). Electronic structure methods for studying surface-enhanced Raman scattering. Chemical Society Reviews, 37(5), 1061-1073.

Kalepu, S., & Nekkanti, V. (2015). Insoluble drug delivery strategies: Review of recent advances and busines sprospects. Acta Pharmaceutica Sinica B, 5(5), 442-453.

Kam, N. W. S., Liu, Z., & Dai, H. (2005). Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. Journal of the American Chemical Society, 127(136), 12492-12493.

Le Guével, X., Hötzer, B., Jung, G., Hollemeyer, K., Trouillet, V., & Schneider, M. (2011). Formation of fluorescent metal (Au, Ag) nanoclusters capped in bovine serum albumin followed by fluorescence and spectroscopy. Journal of Physical Chemistry C, 115(22), 10955-10963. doi:https://doi.org/10.1021/jp111820b

Mohammadi, A., Nicholls, D. L., & Docoslis, A. (2018). Improving the surface-enhanced Raman scattering performance of silver nanodendritic substrates with sprayed-on graphene-based coatings. Sensors, 18(10), 3404.

Nhat, P. V., Nguyen, P. T. N., & Si, N. T. (2020). A computational study of thiol-containing cysteine amino acid binding to Au6 and Au8 gold clusters. Journal of Molecular Modeling, 26(3), 1-8.

Nhat, P. V., Si, N. T., Leszczynski, J., & Nguyen, M. T. (2017). Another look at structure of gold clusters Aun from perspective of phenomenological shell model. Chemical Physics, 493, 140-148.

O'Neil, M. J. (2013). The Merck index: an encyclopedia of chemicals, drugs, and biologicals: RSC Publishing.

Obliosca, J. M., Liu, C., & Yeh, H.-C. (2013). Fluorescent silver nanoclusters as DNA probes. Nanoscale, 5(18), 8443-8461. doi:10.1039/C3NR01601C

Ochterski, J. W. Thermochemistry in Gaussian. See: help@gaussian.com.

Pakiari, A. H., & Jamshidi, Z. (2007). Interaction of amino acids with gold and silver clusters. Journal of Physical Chemistry A, 111, 4391-4396.

Pannico, M., & Musto, P. (2021). SERS spectroscopy for the therapeutic drug monitoring of the anticancer drug 6-Mercaptopurine: Molecular and kinetic studies. Applied Surface Science, 539, 148225.

Parker, W. B. (2009). Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chemical Reviews, 109(7), 2880-2893.

Pazderski, L., Łakomska, I., Wojtczak, A., Szłyk, E., Sitkowski, J., Kozerski, L., Kamieński, B., Koźmiński, W., Tousek, J., & Marek, R. (2006). The studies of tautomerism in 6-mercaptopurine derivatives by 1H-13C, 1H-15N NMR and 13C, 15N CPMAS-experimental and quantum chemical approach. Journal of Molecular Structure, 785(1), 205-215. doi:https://doi.org/10.1016/j.molstruc.2005.10.011

Pearson, R. G. (1963). Hard and Soft Acids and Bases. Journal of the American Chemical Society, 85(22), 3533-3539. doi:10.1021/ja00905a001

Peng, S., Cho, K., Qi, P., & Dai, H. (2004). Ab initio study of CNT NO2 gas sensor. Chemical Physics Letters, 387(4), 271-276.

Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Phys. Rev. Lett., 77(18), 3865. doi:10.1103/PhysRevLett.77.3865

Peterson, K. A., & Puzzarini, C. (2005). Systematically convergent basis sets for transition metals. II. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements. Theoretical Chemistry Accounts, 114(4), 283-296.

Petty, J. T., Nicholson, D. A., Sergev, O. O., & Graham, S. K. (2014). Near-infrared silver cluster optically signaling oligonucleotide hybridization and assembling two DNA hosts. Analytical Chemistry, 86(18), 9220-9228. doi:10.1021/ac502192w

Ramezanpour, M., Leung, S., Delgado-Magnero, K., Bashe, B., Thewalt, J., & Tieleman, D. (2016). Computational and experimental approaches for investigating nanoparticle-based drug delivery systems. Biochimica et Biophysica Acta, 1858(7), 1688-1709.

Ren, H., Chen, F., Li, X., & He, Y. (2019). A new insight of structures, bonding and electronic properties for 6-mercaptopurine and Ag 8 clusters configurations: a theoretical perspective. BMC chemistry, 13(1), 1-10.

Sahasranaman, S., Howard, D., & Roy, S. (2008). Clinical pharmacology and pharmacogenetics of thiopurines. European journal of clinical pharmacology, 64(8), 753-767.

Scott, K. A., & Njardarson, J. T. (2019). Analysis of US FDA-approved drugs containing sulfur atoms. Sulfur Chemistry, 1-34.

Sharma, J., Rocha, R. C., Phipps, M. L., Yeh, H.-C., Balatsky, K. A., Vu, D. M., Shreve, A. P., Werner, J. H., & Martinez, J. S. (2012). A DNA-templated fluorescent silver nanocluster with enhanced stability. Nanoscale, 4(14), 4107-4110. doi:10.1039/C2NR30662J

Si, N. T., Nhung, N. T. A., Bui, T. Q., Nguyen, M. T., & Nhat, P. V. (2021). Gold nanoclusters as prospective carriers and detectors of pramipexole. RSC Advances, 11(27), 16619-16632. doi:10.1039/D1RA02172A

Sun, T., Guo, Q., Zhang, C., Hao, J., Xing, P., Su, J., Li, S., Hao, A., & Liu, G. (2012). Self-assembled vesicles prepared from amphiphilic cyclodextrins as drug carriers. Langmuir, 28(23), 8625-8636.

Suresh Kumar, S., Athimoolam, S., & Sridhar, B. (2015). XRD, vibrational spectra and quantum chemical studies of an anticancer drug: 6-Mercaptopurine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 146, 204-213. doi:https://doi.org/10.1016/j.saa.2015.02.104

Swietach, P., Vaughan-Jones, R. D., Harris, A. L., & Hulikova, A. (2014). The chemistry, physiology and pathology of pH in cancer. Philosophical Transactions of the Royal Society B, 369(1638), 20130099. doi:10.1098/rstb.2013.0099

Tomasi, J., Mennucci, B., & Cammi, R. (2005). Quantum mechanical continuum solvation models. Chemical Reviews, 105(8), 2999-3094. doi:10.1021/cr9904009

Torchilin, V. P. (2014). Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nature Reviews Drug Discovery, 13(11), 813-827.

Veronese, F. M., & Pasut, G. (2005). PEGylation, successful approach to drug delivery. Drug Discovery Today, 10(21), 1451-1458.

Vivoni, A., Chen, S. P., Ejeh, D., & Hosten, C. M. (2001). Normal‐mode analysis of the Raman‐active modes of the anti‐tumor agent 6‐mercaptopurine. Journal of Raman Spectroscopy, 32(1), 1-8.

World Health Organization. (2019). Executive Summary. The selection and use of essential medicines 2019. Report of the 22nd WHO expert committee on the selection and use of essential medicines, 1-5 April 2019. Geneva: World Health Organization; 2019. Licence: CC BY-NC-SA 3.0 IGO.

Yang, H., Liu, Y., Liu, Z., Yang, Y., Jiang, J., Zhang, Z., Shen, G., & Yu, R. (2005). Raman mapping and in situ SERS spectroelectrochemical studies of 6-mercaptopurine SAMs on the gold electrode. Journal of Physical Chemistry B, 109(7), 2739-2744. doi:10.1021/jp046082l

Yang, J. J., Landier, W., Yang, W., Liu, C., Hageman, L., Cheng, C., Pei, D., Chen, Y., Crews, K. R., & Kornegay, N. (2015). Inherited NUDT15 variant is a genetic determinant of mercaptopurine intolerance in children with acute lymphoblastic leukemia. International Journal of Clinical Oncology, 33(11), 1235.

Yao, G., & Huang, Q. (2018). DFT and SERS study of L-Cysteine adsorption on the surface of gold nanoparticles. Journal of Physical Chemistry C, 122(27), 15241-15251.