Khả năng chuyển hóa đạm của chủng vi khuẩn nitrate hóa chọn lọc sử dụng cho hệ thống lọc tuần hoàn trong nuôi trồng thủy sản
Abstract
This study was carried out to evaluate the nitrogen conversion of selected nitrifying bacteria from shrimp ponds used for the recirculating system in shrimp culture tanks. The experiment consisted of 4 treatments: Control: no addition of bacteria; Treatment 1: added bacteria AOB TB7.2; Treatment 2: added NOB TV4.2 and Treatment 3: added a mixture of bacteria AOB TB7.2 and NOB TV4.2; each treatment was repeated 3 times. The results showed that the addition of bacteria AOB TB7.2 and NOB TV4.2 to the biofilter of circulatory system reduced the concentration of toxic gases such as ammonia and nitrite in the culture tank, and significantly increased shrimp survival. Moreover, there was no discharged water throughout the culture cycle could minimize the impact on the outside environment. Adding a combination of AOB TB7.2 and NOB TV4.2, the nitrification process took place faster than single supplementation. Nitrification and nitrification rate increased with bacteria addition treatments compared to the control (7 and 14 versus 14 and 35 days, respectively).
Tóm tắt
Đề tài được thực hiện nhằm đánh giá khả năng chuyển hóa đạm của các chủng vi khuẩn nitrate hóa chọn lọc từ ao nuôi tôm sử dụng cho hệ thống lọc tuần hoàn trong nuôi tôm thẻ trên bể. Thí nghiệm gồm 4 nghiệm thức, mỗi nghiệm thức lập lại 3 lần. Đối chứng: không bổ sung vi khuẩn; 2) Nghiệm thức 1: bổ sung vi khuẩn AOB TB7.2; Nghiệm thức 2: bổ sung vi khuẩn NOB TV4.2 và Nghiệm thức 3: bổ sung hỗn hợp vi khuẩn AOB TB7.2 và NOB TV4.2. Kết quả cho thấy việc bổ sung vi khuẩn AOB TB7.2 và vi khuẩn NOB TV4.2 vào bể lọc sinh học trong hệ thống tuần hoàn làm giảm hàm lượng các khí độc ammonia và nitrite trong bể nuôi, tăng tỉ lệ sống, khác biệt có ý nghĩa thống kê đồng thời tái sử dụng được nguồn nước trong suốt chu kỳ nuôi, giảm thiểu tác động đến môi trường bên ngoài. Bổ sung kết hợp AOB TB7.2 và NOB TV4.2 quá trình nitrate hóa diễn ra nhanh hơn so với bổ sung đơn dòng. Quá trình nitrite hóa và nitrate hóa diễn ra sớm hơn ở các nghiệm thức có bổ sung vi khuẩn so với đối chứng (nitrite hóa và nitrate hóa là 7 ngày và 14 ngày; 14 ngày và 35 ngày lần lượt ở nghiệm thức bổ sung vi khuẩn và đối chứng).
Article Details
Tài liệu tham khảo
Abeliovich, A. (2006). The nitrite oxidizing bacteria. The prokaryotes, 5, 861-872.
Alleman, J.E. (1984). Elevated nitrite occurrence in biological wastewater treatment systems. Water Science and Technology, 17, 409–419.
APHA. (2017). Standard Methods for the Examination of Water and Wastewater. 23rd Edition, American Public Health Association, American Water Works Association, Water Environment Federation, Denver, 1504 pp.
Boyd, C.E., Thunjai, T. & Boonyaratpalin, M. (2002). Dissolved salts in water for inland low salinity shrimp culture. Global Aquaculture Advocate, (3), 40–45.
Carroll, P.M., Watanabe, W.O. & Losordo, T.M. (2005). Pilot Production of Hatchery‐Reared Summer Flounder Paralichthys dentatus in a Marine Recirculating Aquaculture System: The Effects of Ration Level on Growth, Feed Conversion, and Survival. Journal of the World Aquaculture Society, 36, 120-128.
Chanratchakool, P. (2003). Problem in Penaeus monodon culture in low salinity areas. Aquaculture Asia, 8(3), 53-56.
Correia, E.S., Wilkenfeld, J.S., Morris, T.C., Wei, L., Prangnell, D.I., & Samocha, T.M. (2014). Intensive nursery production of the Pacific white shrimp Litopenaeus vannamei using two commercial feeds with high and low protein content in a biofloc-dominated system. Aquacultural Engineering, 59, 48–54.
Ebeling, J.M., Timmons, M.B., & Bisogni, J.J. (2006). Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture, 257(1-4), 346–358.
Ferreira, G.S., Bolívar, N.C., Pereira, S.A., Guertler, C., Vieira, F.D.N., Mouriño, J.L.P. & Seiffert, W.Q. (2015). Microbial biofloc as source of probiotic bacteria for the culture of Litopenaeusvannamei. Aquaculture, 448, 273–279.
Hommes, N. G., Sayavedra-Soto, L. A., & Arp, D. J. (2003). Chemolithoorganotrophic growth of Nitrosomonas europaea on fructose. Journal of Bacteriology, 185(23), 6809–6814
Karthik, R., Pushpam, A.C., Chelvan, Y. & Vanitha, M.C. (2015). Efficacy of probiotic and nitrifier bacterial consortium for the enhancement of Litopenaeus vannamei aquaculture. International Journal of Veterinary Science and Research, 1(1), 29-34.
Li, Y., Li, J., & Wang, Q. (2006). The effects of dissolved oxygen concentration and stocking density on growth and non-specific immunity factors in Chinese shrimp, Fenneropenaeus chinensis. Aquaculture, 256, 608–616.
Lin, Y.C. & Chen, J.C. (2003). Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Aquaculture, 224(1–4), 193–201.
Luo, G., Gao, Q., Wang, C., Liu, W., Sun, D. L.L. & Tan, H. (2014). Growth, digestive activity, welfare, and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system. Aquaculture, 422-423, 1–7.
Maya, E.N., Banerjee, S., Shariff, M. & Yusoff, F. M. (2013). Screening, identification and immobilization of ammonia oxidizing bacteria consortium collected from mangrove areas and shrimp farms. Asian Journal of Animal and Veterinary Advances, 8: 73-81.
Mordenti, O., Casalini, A., Mandelli, M. & Di Biase, A. (2014). A closed recirculating aquaculture system for artificial seed production of the European eel (Anguilla anguilla): Technology development for spontaneous spawning and eggs incubation. Aquacultural Engineering, 58, 88–94.
Palm, H.W., Knaus, U., Wasenitz, B., Bischoff, A.A. & Strauch, S.M. (2018). Proportional up scaling of African catfish (Clarias gariepinus Burchell, 1822) commercial recirculating aquaculture systems disproportionally affects nutrient dynamics, Aquaculture. 491, 155-168.
Piérri, V., Valter-Severino, D., Goulart-de-Oliveira, K., Manoel-do-Espírito-Santo, C., Nascimento-Vieira, F. & Quadros-Seiffert, W. (2015). Cultivation of marine shrimp in biofloc technology (BFT) system under different water alkalinities, Brazilian Journal of Biology. 75(3), 558–564.
Ray, A.J. & Lotz, J.M. (2017). Shrimp (Litopenaeus vannamei) production and stable isotope dynamics in clear-water recirculating aquaculture systems versus biofloc systems, Aquaculture Research, 1-9.
Spieck, E. & Bock, E. (2005). The Lithoautotrophic Nitrite-Oxidizing Bacteria. Bergey’s Manual of Systematic Bacteriology, Volume 2 Part A Introductory Essays, 149-153.
Stenstrom, M.K., & Poduska, R.A. (1980). The effect of dissolved oxygen concentration on nitrification, Water Research. 14(6), 643–649.
Stephen, J.R., McCaig, A.E., Smith, Z. Prosser, I. M & Embley, M.T. (1996). Molecular diversity of soil and marine 16S Ribosomal RNA gene sequences related to β-subgroup Ammonia Oxidasing Bacteria. Appl. Environ. Microbiol, 62, 4147-4154.
Suantika, G., Turendro, O.R., & Situmorang, M.L. (2017). Use of nitrifying bacteria for promoting giant freshwater prawn (Macrobrachium rosenbergii de Man) nursery hhase in indoor system. Journal of Fisheries & Livestock Production, 5(2).
Thái Bá Hồ & Ngô Trọng Lư, 2003. Kỹ thuật nuôi tôm thẻ chân trắng, Nhà xuất bản Nông nghiệp Hà Nội.
Whetstone, J.M., G.D. Treece, C.L.B & Stokes, A.D. (2002). Opportunities and constraints in marine shrimp farming. Southern Regional Aquaculture Center (SRAC) Publication No. 2600 USA.
William, W., Amanda, M., Brian, V. & Steven, S. (2009). Design, loading, and water quality in recirculating systems for Atlantic Salmon (Salmo salar) at the USDA ARS National Cold Water Marine Aquaculture Center (Franklin, Maine), 41(2), 60–70.
Vũ Thế Trụ. (2012). Cải tiến kĩ thuật nuôi tôm tại Việt Nam. Nhà xuất bản Nông nghiệp, Hà Nội.