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TÓM TẮT 
Nhóm gián đoạn A4 modular trong mô hình siêu đối xứng tối thiểu, 
với cơ chế seesaw loại I tối giản để sinh khối lượng các neutrino 
được đề xuất nhằm hạn chế số lượng các tham số tự do và các 
trường mới khi mở rộng mô hình chuẩn. Kết quả tính số cho thấy, 
mô hình đề xuất đã giải thích thỏa đáng tất cả các số liệu thí 
nghiệm các lepton ở độ chính xác 3𝜎𝜎. Dựa trên các số liệu thực 
nghiệm, các giá trị được phép của các tham số của mô hình cũng 
được tìm thấy. Quá trình leptogenesis cũng đã được tính toán, kết 
quả tính số chỉ ra rằng, bất đối xứng giữa vật chất và phản vật chất 
của Vũ trụ đã được giải thích thỏa đáng bởi mô hình đề xuất trong 
nghiên cứu này. 

Từ khóa: A4 modular, dạng modular, leptogenesis, seesaw tối 
thiểu 

ABSTRACT 
An A4 modular discrete group is researched in a minimal 
supersymmetric context with the type I  minimal seesaw mechanism 
in order to produce neutrino mass and to lower the number of free 
parameters and unexpected new particles when the Standard 
model is expanded. The researched model can explain all the data 
of the leptons  from experiments,  at the 3𝜎𝜎 confidence level. The 
values of the parameters of the model are also found. The 
baryogenesis generation through leptogenesis is calculated 
numerically. Our results show that the asymmetry between baryon 
number and anti-baryon number of the Universe is properly 
generated by our research model.    

Keywords:  A4 modular, leptogenesis, minimal seesaw, modular 
form 

1. GIỚI THIỆU 

Thực nghiệm về dao động neutrino đã xác nhận 
rằng neutrino có khối lượng. Các tham số dao động 
neutrino như hiệu bình phương khối lượng neutrino, 
các góc trộn lepton và các pha vi phạm CP (Charge 
and Parity) (Esteban et al., 2020) và các quan sát vũ 

trụ học (Aghanim et al., 2020) chỉ ra rằng, khối 
lượng neutrino có độ lớn nhỏ hơn nhiều bậc so với 
khối lượng của các fermion khác trong Mô hình 
chuẩn (Standard model, SM). Do đó, một số mô 
hình mới cần vượt ra ngoài SM để giải thích những 
khối lượng nhỏ như vậy, được gọi là các Mô hình 
chuẩn mở rộng (Beyond the Standard model, BSM). 
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Khi nghiên cứu về vũ trụ học, có thêm những 
động lực mạnh mẽ để xem xét vật lý mới vượt ra 
ngoài SM. Một là, không có ứng cử viên thích hợp 
cho vật chất tối trong SM. Hai là, quá trình sinh 
baryon (bayongenesis) không hoạt động trong SM, 
vì quá trình sinh baryon trong lý thuyết điện yếu đòi 
hỏi khối lượng boson Higgs nhỏ hơn khối lượng 
boson Higgs đã quan sát được bằng thực nghiệm. 
Cũng nên nhắc lại ở đây là, theo lý thuyết Big-bang 
(Weinberg, 1993), Vũ trụ được sinh ra sau một vụ 
nổ lớn (Big-bang), sau đó các baryon và phản phản 
baryon dần được tạo ra và biến đổi theo thời gian 
với cùng một hình thức, với số lượng như nhau cho 
đến tại. Các dữ liệu về đo đạc bức xạ nền của Vũ trụ 
(Cosmic Microwave Background - CMB) và sự hình 
thành các hạt nhân nhẹ sau Big-bang (Big Bang 
Nucleosynthesis - BBN) cho thấy rằng, hiện tại phản 
baryon hầu như không tìm thấy trong Vũ trụ, ngoại 
trù ở lớp ngoài cùng của khí quyển và trong các thí 
nghiệm gia tốc hạt. Người ta gọi đây là bất đối xứng 
baryon – phản baryon của Vũ trụ (Baryon 
Asymmetry of the Universe, BAU). Như vậy có 
nghĩa là vật chất được sinh ra nhiều hơn phản vật 
chất khi Vũ trụ tiến hóa, hay gọi đơn giản là quá 
trình sinh baryon như đề cập ở trên. May mắn thay, 
các BSM với chế seesaw (Seesaw mechanism, SS) 
(Minkowski, 1977) có thể giải thích BAU hay quá 
trình sinh baryon, bằng một cơ chế được gọi là 
leptogenesis (Fukugita & Yanagida, 1986). 

Cơ chế SS là một ý tưởng đơn giản để giải quyết 
nguồn gốc của khối lượng neutrino, trong đó khối 
lượng neutrino (rất nhẹ) được tạo ra bởi khối lượng 
neutrino phân cực phải (right handed neutrino, 
RHN) rất nặng. Nếu mô hình chứa hai RHN thì ta 
có cơ chế SS tối thiểu (minimal seesaw mechanism), 
khi đó một (trong ba) neutrino có khối lượng bằng 
không. Trong các mô hình như vậy, leptogenesis 
hoạt động như một cơ chế của baryogenesis, trong 
đó phân rã vi phạm CP (Charge conjugate and 
Parity) của các RHN tạo ra bất đối xứng lepton. Bất 
đối xứng lepton lại được chuyển đổi một phần thành 
bất đối xứng baryon thông qua quá trình sphaleron 
(Fukugita & Yanagida, 1986). Cùng với cơ chế SS, 
nếu các đối xứng thế hệ (flavor/generation 
symmetries) được thêm vào nhóm chuẩn của SM 
cũng dẫn đến một hệ BSM có khả năng thú vị để giải 
thích cấu trúc trộn của khu vực lepton. Theo định 
hướng này, các nhóm đối xứng gián đoạn không 
giao hoán như S3

 (Mohapatra et al., 2006), A4  
(Feruglio et al., 2007), S4 (Bazzocchi & Morisi, 
2009),… đã được sử dụng một cách rộng rãi. 

Trong số các nhóm gián đoạn không giao hoán, 
A4 là nhóm tiết kiệm nhất. Đây là nhóm các hoán vị 

chẵn của bốn phần tử, có ba biểu diễn một chiều 
không tương đương (1, 1′ và 1′′) và một biểu diễn ba 
chiều (3). Điều thú vị của mô hình này là ba thế hệ 
của các đơn tuyến lepton phân cực phải có thể được 
biểu diễn một cách tự nhiên tương ứng cho ba biểu 
diễn một chiều; trong khi ba lưỡng tuyến lepton 
phân cực trái được biểu diễn bởi tam tuyến của 
nhóm A4. Các kỹ thuật tính toán liên quan đến nhóm 
A4 có thể tham khảo công trình của Le et al. (2019) 
và của Nguyen et al. (2020). Một tính chất chung 
của các BSM với nhóm A4 nói riêng và các nhóm 
đối xứng gián đoạn nói chung, đó là các đối xứng 
này chỉ tồn tại ở mức năng lượng rất cao, sau đó bị 
phá vỡ bởi các trường Higgs mới (được gọi là các 
flavon) để sinh cấu trúc trộn cho khu vực lepton, và 
cùng với phá vỡ đối xứng điện yếu để sinh khối 
lượng các lepton của mô hình. Việc thêm nhiều 
flavon rất nặng làm cho các mô hình loại này không 
thể kiểm chứng bằng thực nghiệm cũng như xuất 
hiện nhiều số hạng tương tác không mong muốn và 
nhiều tham số tự do. Điều này làm cho các BSM 
theo hướng này là kém hấp dẫn. 

Khoảng 10 năm gần đây, người ta tìm thấy các 
các BSM với nhóm đối xứng modular (Ferruccio, 
2017) là ứng viên hiệu quả, có khả năng khắc phục 
được những hạn chế của BSM với đối xứng gián 
đoạn. Các mô hình đối xứng modular hữu hạn là 
đẳng cấu với mô hình đối xứng gián đoạn, do đó 
chúng sinh ra ma trận trộn các lepton là giống như 
phương thức của các mô hình đối xứng gián đoạn. 
Đặc trưng nổi bật nhất của mô hình modular là để 
đối xứng modular bị phá vỡ, đối xứng này không 
yêu cầu có thêm hoặc có thêm rất hạn chế các trường 
vô hướng mới. Xây dựng các BSM bằng đối xứng 
modular, do đó, mở ra một phương hướng nghiên 
cứu mới của lý vật lý hạt, đó việc tìm kiếm một lý 
thuyết tối ưu để mô tả hoàn chỉnh vật lý hạt cơ bản. 

Với các ưu điểm của mô hình đối xứng modular 
và mô hình đối xứng gián đoạn, trong bài báo này, 
đối xứng A4 modular cho các hạt lepton được sử 
dụng, cụ thể là modular đẳng cấu với nhóm đối xứng 
A4 modular được thêm vào nhóm 𝑆𝑆𝑆𝑆(2)𝐿𝐿Í𝑈𝑈(1)𝑌𝑌 , 
là nhóm chuẩn SM. Trong mô hình nghiên cứu này, 
khu vực lepton trung hòa có hai RHN mới được 
thêm vào. Khi dó, thông qua công thức SS loại I, 
khối lượng cho các neutrino nhẹ được sinh ra, vì vậy 
người gọi đây là cơ chế SS tối thiểu. Sau đó không 
gian tham số của mô hình ở khu vực lepton được 
tính toán dựa vào số liệu thí nghiệm hiện nay. Dựa 
trên các giá trị cho phép của các tham số của mô 
hình, số bất đối xứng baryogenesis thông qua lý 
thuyết leptogenesis được tính toán để giải thích sự 

https://vi.wikipedia.org/wiki/Steven_Weinberg
https://www.sciencedirect.com/author/57204255614/rabindra-nath-mohapatra
https://www.worldscientific.com/doi/abs/10.1142/9789813238053_0012
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bất đối xứng giữa vật chất và phản vật chất của  
Vũ trụ. 

2. PHƯƠNG PHÁP NGHIÊN CỨU  

Ở bài báo này,  chúng tôi sử dụng lý thuyết 
trường lượng tử và lý thuyết nhóm để thực hiện phân 
tích và tính toán giải tích. Phần mềm Mathematica 
được sử dụng để hỗ trợ tính giái tích, thực hiện tính 
số và biểu diễn hình các các kết quả tính số.  

3. XÂY DỰNG MÔ HÌNH 
3.1. Nhóm modular và dạng modular 

Ở mục này, lý thuyết về  nhóm đối xứng modular 
(modular group) và về dạng modular (modular 
form) được giới thiệu một cách khái quát. Theo đó, 
nhóm đối xứng modular Γ(N), có tên gọi khác là 
nhóm con đồng dư chính (principal congruence 
subgroups) bậc N, với 𝑁𝑁 = 1, 2, 3, …, được định 
nghĩa như sau (Ferruccio, 2017): 

Γ(𝑁𝑁) = ��𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� ∈ 𝑆𝑆𝑆𝑆(2, 𝑍𝑍), �𝑎𝑎 𝑏𝑏

𝑐𝑐 𝑑𝑑� =

                                             �1 0
0 1� (𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁)�,      (1) 

Γ(N) còn được gọi là nhóm con chuẩn tắc của 
nhóm modular đồng nhất Γ ≡ Γ(1) ≅ SL(2,Z). Ở 
đây SL(2, Z) là nhóm các ma trận bậc 2 × 2, với các 
phần tử của nó là các số nguyên và định thức của 
chúng bằng đơn vị. Khi tác dụng Γ(N) lên biến số 
phức z (còn được gọi là modulus) ở nửa mặt phẳng 
trên (Im(𝑧𝑧) > 0) và làm nó biến đổi như dưới đây: 

𝑧𝑧 → 𝛾𝛾𝑧𝑧 = 𝑎𝑎𝑎𝑎+𝑏𝑏
𝑐𝑐𝑐𝑐+𝑑𝑑

, �(𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑) ∈ 𝑍𝑍, 𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏 = 1�,     (2) 

trong đó 𝛾𝛾 ∈ Γ(𝑁𝑁). 

Modular form được định nghĩa như sau, cho hàm 
phức 𝑓𝑓(𝑧𝑧) là giải tích  và biến đổi dưới tác dụng của 
Γ(𝑁𝑁) như dưới đây: 

𝑓𝑓(𝑧𝑧) → (𝑐𝑐𝑐𝑐 + 𝑑𝑑)𝑘𝑘𝑓𝑓(𝑧𝑧),            (3) 

trong đó: k là các số nguyên dương chẵn, được 
gọi là trọng số modular (modular weight). Khi đó 
𝑓𝑓(𝑧𝑧) được gọi là một dạng modular form (có trọng 
số k và bậc N) .  

Ngoài ra, người ta định nghĩa các nhóm con xạ 
ảnh đồng dư chính Γ�(𝑁𝑁) (the projective principal 
congruence subgroups) như sau: Γ�(𝑁𝑁) = Γ(𝑁𝑁)/±I 
với  N = 1, 2. Có thể nhận thấy, khi 𝑁𝑁 ≥  3  thì 
Γ�(𝑁𝑁) = Γ(𝑁𝑁), do lúc này phần tử - I không thuộc 
nhóm Γ(N). Nhóm modular  Γ� = Γ/±𝐼𝐼 được sinh 
bởi hai vi tử S và T. Tác dụng hai vi tử này lên 
modulus 𝑧𝑧 sẽ làm z biến đổi như dưới đây: 

𝑆𝑆: 𝑧𝑧 → − 1
𝑧𝑧

;     𝑇𝑇: 𝑧𝑧 → 𝑧𝑧 + 1.            (4) 

S và T thỏa điều kiện 

𝑆𝑆2 = (𝑆𝑆𝑆𝑆)3 = (𝑇𝑇𝑇𝑇)3 = 𝐼𝐼.           (5) 

Các vi tử S và T có thể được biểu diễn bằng hai 
ma thuộc nhóm PSL (2, Z) như dưới đây: 

𝑆𝑆 = � 0 1
−1 0� , 𝑇𝑇 = �1 1

0 1�. 

Nhóm Γ𝑁𝑁 nếu thêm điều kiện 𝑇𝑇𝑁𝑁 = 𝐼𝐼 vào các 
điều kiện ở phương trình (5), thì trở thành là các 
nhóm modular hữu hạn, trong đó Γ𝑁𝑁 ≡ Γ�/Γ�(𝑁𝑁). 
Khi đó, dưới tác dụng của nhóm Γ𝑁𝑁, các modular 
form 𝑓𝑓(𝑧𝑧) sẽ biến đổi như dưới đây: 

𝑓𝑓(𝑧𝑧) → (𝑐𝑐𝑐𝑐 + 𝑑𝑑)𝑘𝑘𝜌𝜌(𝑓𝑓)(𝛾𝛾)𝑓𝑓(𝑧𝑧), 𝛾𝛾 ∈ Γ𝑁𝑁,       (6) 

ở đây, tương tự như trên, k là các số nguyên 
dương chẵn.  

Khi áp dụng các đối xứng modular cho các mô 
hình lý thuyết cho vật lý hạt cơ bản, chúng ta giới 
thiệu và yêu cầu các siêu trường 𝜙𝜙(𝐼𝐼) biến đổi đối 
với nhóm Γ𝑁𝑁  theo biểu thức: 

𝜙𝜙(𝐼𝐼) → (𝑐𝑐𝑐𝑐 + 𝑑𝑑)−𝑘𝑘𝐼𝐼𝜌𝜌(𝐼𝐼)(𝛾𝛾)𝜙𝜙(𝐼𝐼),        (7) 

ở đây −𝑘𝑘𝐼𝐼 là trọng số gắn với trường 𝜙𝜙(𝐼𝐼). Ở hai 
công thức (6) và (7), 𝜌𝜌(𝛾𝛾)  là toán tử (ma trận) biểu 
diễn cho phép biến đổi 𝛾𝛾. Trong phương trình (7), 
nếu không yêu cầu 𝜙𝜙(𝐼𝐼) là các modular form (như đa 
số các mô lý thuyết sử dụng đối xứng modular) thì  
−𝑘𝑘𝐼𝐼 chỉ cần là những số nguyên. 

Các nhóm đối xứng Γ𝑁𝑁 với  N = 2, 3, 4,... đã được 
chứng minh là đẳng cấu với các nhóm đối xứng gián 
đoạn 𝑆𝑆3, 𝐴𝐴4, 𝑆𝑆4  (Ferruccio, 2017). Trong bài báo 
này, chúng tôi chỉ giới hạn nghiên cứu nhóm đối 
xứng Γ3  ≃  A4, cho đơn giản, gọi là mô hình 𝐴𝐴4 
modular. Trong mô hình A4 modular ở nghiên cứu 
này, siêu thế 𝒲𝒲(𝑧𝑧, 𝜙𝜙) được yêu cầu bất biến đối với 
mô hình nghiên cứu và có thể biểu diễn thành các số 
hạng chứa các siêu đa tuyến như dưới đây: 

𝒲𝒲(𝑧𝑧, 𝜙𝜙) = ∑ ∑ 𝑌𝑌𝐼𝐼1,...,𝐼𝐼𝑛𝑛𝐼𝐼1,…,𝐼𝐼𝑛𝑛𝑛𝑛 (𝑧𝑧)𝜙𝜙(𝐼𝐼1). . . 𝜙𝜙(𝐼𝐼𝑛𝑛),    (8) 

trong đó các hệ số 𝑌𝑌𝐼𝐼1,...,𝐼𝐼𝑛𝑛(𝑧𝑧) là các tham số 
tương tác Yukawa, được yêu cầu có dạng modular 
form và chúng biến đổi theo các phép biến đổi của 
nhóm Γ𝑁𝑁 như dưới đây, phương trình (6): 

𝑌𝑌𝐼𝐼1,...,𝐼𝐼𝑛𝑛 → (𝑐𝑐𝑐𝑐 + 𝑑𝑑)𝑘𝑘𝑌𝑌𝜌𝜌𝑌𝑌(𝛾𝛾)𝑌𝑌𝐼𝐼1,...,𝐼𝐼𝑛𝑛.           (9) 

Yêu cầu bất biến của só hạng siêu thế 𝒲𝒲(𝑧𝑧, 𝜙𝜙) 
dẫn đến đòi hỏi 𝑘𝑘𝑌𝑌 = 𝑘𝑘1 + ⋯ + 𝑘𝑘𝑛𝑛và 𝜌𝜌𝑌𝑌 ⊗ 𝜌𝜌𝐼𝐼1 ⊗
… ⊗ 𝜌𝜌𝐼𝐼𝑛𝑛 ∋ 𝐼𝐼, với I là ma trận đơn vị. 

https://www.worldscientific.com/doi/abs/10.1142/9789813238053_0012
https://www.worldscientific.com/doi/abs/10.1142/9789813238053_0012
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Đối với mô hình Γ3  ≃  A4 của nghiên cứu này, 
người ta chỉ ra được rằng, bắt đầu với trọng số thấp 
nhất là 𝑘𝑘𝑌𝑌 = 2, chỉ có 03 modular form là thỏa điều 
kiện độc lập tuyến tính, được ký hiệu bởi 𝑌𝑌𝑖𝑖

2(𝑧𝑧), 𝑖𝑖 =
1, 2,3 (Nguyen, 2025):  

𝑌𝑌1
2(𝑧𝑧) =

𝑖𝑖
2𝜋𝜋 �

𝜂𝜂′(𝑧𝑧/3)
𝜂𝜂(𝑧𝑧/3) +

𝜂𝜂′�(𝑧𝑧 + 1)/3�
𝜂𝜂�(𝑧𝑧 + 1)/3�

+
𝜂𝜂′�(𝑧𝑧 + 2)/3�
𝜂𝜂�(𝑧𝑧 + 2)/3�

−                          
27𝜂𝜂′(3𝑧𝑧)

𝜂𝜂(3𝑧𝑧) �, 

𝑌𝑌2
2(𝑧𝑧) = −𝑖𝑖

𝜋𝜋
�𝜂𝜂′(𝑧𝑧/3)

𝜂𝜂(𝑧𝑧/3)
+ 𝜔𝜔2 𝜂𝜂′�(𝑧𝑧+1)/3�

𝜂𝜂�(𝑧𝑧+1)/3�
+

𝜔𝜔 𝜂𝜂′�(𝑧𝑧+2)/3�
𝜂𝜂�(𝑧𝑧+2)/3�

�, 𝑌𝑌3
2(𝑧𝑧) = −𝑖𝑖

𝜋𝜋
�𝜂𝜂′(𝑧𝑧/3)

𝜂𝜂(𝑧𝑧/3)
+ 𝜔𝜔 𝜂𝜂′�(𝑧𝑧+1)/3�

𝜂𝜂�(𝑧𝑧+1)/3�
+

𝜔𝜔2 𝜂𝜂′�(𝑧𝑧+2)/3�
𝜂𝜂�(𝑧𝑧+2)/3�

�, (10) 

trong đó chỉ số trên để chỉ trọng số (bằng 2) và 
𝜔𝜔 =  𝑒𝑒𝑖𝑖2𝜋𝜋/3. Trong phương trình (10), 𝜂𝜂 được gọi là 
hàm Dedekind eta, là hàm phức tác động lên nửa 
mặt phẳng trên, thường được xây dựng sẵn (built-in) 
trong các phần mềm tính số, được cho bởi: 

𝜂𝜂(𝑧𝑧) = 𝑞𝑞1/24 ∏ (1 − 𝑞𝑞𝑛𝑛∞
𝑛𝑛=1 ),   𝑞𝑞 ≡ 𝑒𝑒𝑖𝑖2𝜋𝜋𝜋𝜋 ,     (11) 

thỏa mãn điều kiện:  𝜂𝜂 �−1
𝑧𝑧

� = √−𝑖𝑖𝑖𝑖  𝜂𝜂(𝑧𝑧),     

𝜂𝜂(𝑧𝑧 + 1) = 𝑒𝑒𝑖𝑖𝑖𝑖/12 𝜂𝜂(𝑧𝑧). 

Các modular form 𝑌𝑌𝑖𝑖
2(𝑧𝑧) (𝑖𝑖 = 1, 2, 3) liệt kê ở 

(10) có thể hợp thành một tam tuyến (3) modular 
(với trọng số bằng 2) như sau: 

𝑌𝑌𝟑𝟑
2 = (𝑌𝑌1

2 , 𝑌𝑌2
2, 𝑌𝑌3

2)𝑇𝑇. 

Từ các modular form cơ sở 𝑌𝑌𝑖𝑖
2(𝑧𝑧), các modular 

form với trọng số cao hơn có thể được xây dựng, 
dựa trên các phép nhân các biểu diễn tối giản của 
nhóm gián đoạn A4. Trong bài báo này,  chúng tôi 
chỉ quan tâm đến các modular form có liên liên quan 
cho mục đích nghiên cứu. Cụ thể đó là: hai đơn 
tuyến 1, 1’ và một tam tuyến 3 với trọng số bằng 4: 

𝑌𝑌𝟏𝟏
4 = ((𝑌𝑌1

2)2 + 2𝑌𝑌2
2𝑌𝑌3

2), 

𝑌𝑌𝟏𝟏′
4 = ((𝑌𝑌3

2)2 + 2𝑌𝑌1
2𝑌𝑌2

2), 

𝑌𝑌𝟑𝟑
4 = �

(𝑌𝑌1
2)2 − 𝑌𝑌2

2𝑌𝑌3
2

(𝑌𝑌3
2)2 − 𝑌𝑌1

2𝑌𝑌2
2

(𝑌𝑌2
2)2 − 𝑌𝑌1

2𝑌𝑌3
2

 �. 

Một biểu diễn một chiều 1 và hai biểu diễn ba 
chiều 3, với trọng số bằng 6: 

𝑌𝑌𝟏𝟏
6 = (𝑌𝑌1

2)3 + (𝑌𝑌2
2)3 + (𝑌𝑌3

2)3 − 3𝑌𝑌1
2𝑌𝑌2

2𝑌𝑌3
2, 

𝑌𝑌𝟑𝟑,1
6 = ((𝑌𝑌1

2)2 + 2𝑌𝑌2
2𝑌𝑌3

2) �
𝑌𝑌1

2

𝑌𝑌2
2

𝑌𝑌3
2

�, 

𝑌𝑌𝟑𝟑,2
6 = ((𝑌𝑌3

2)2 + 2𝑌𝑌1
2𝑌𝑌2

2) �
𝑌𝑌3

2

𝑌𝑌1
2

𝑌𝑌2
2

�. 

Ba biểu diễn một chiều 1, 1’ và 1’’ với trọng số 
bằng 8: 

𝑌𝑌𝟏𝟏
8 = ((𝑌𝑌1

2)2 + 2𝑌𝑌2
2𝑌𝑌3

2)2, 

𝑌𝑌𝟏𝟏′
8 = ((𝑌𝑌1

2)2 + 2 𝑌𝑌2
2𝑌𝑌3

2)((𝑌𝑌3
2)2 + 2𝑌𝑌1

2𝑌𝑌2
2), 

𝑌𝑌𝟏𝟏"  
8 = ((𝑌𝑌3

2)2 + 2 𝑌𝑌1
2𝑌𝑌2

2)2. 

Và cuối cùng là hai biểu diễn một chiều 1, 1’ với 
trọng số bằng 10: 

𝑌𝑌𝟏𝟏
10 = ((𝑌𝑌1

2)2 + 2𝑌𝑌2
2𝑌𝑌3

2((𝑌𝑌1
2)3 + (𝑌𝑌2

2)3 + (𝑌𝑌3
2)3

− 3𝑌𝑌1
2𝑌𝑌2

2𝑌𝑌3
2), 

𝑌𝑌𝟏𝟏′
10 = ((𝑌𝑌3

2)2 + 2𝑌𝑌1
2𝑌𝑌2

2)((𝑌𝑌1
2)3 + (𝑌𝑌2

3)3 + (𝑌𝑌3
2)3

− 3𝑌𝑌1
2𝑌𝑌2

2𝑌𝑌3
2). 

3.2. Nhóm A𝟒𝟒 modular cho khu vực lepton 

Sau khi tổng quan về nhóm đối xứng moduar 𝐴𝐴4 
được trình bày ở trên, ở đây chúng tôi áp dụng nhóm 
đối xứng này vào các phổ hạt lepton của mô hình. 
Trong đó, các siêu trường lepton và các hằng số 
tương tác Yukawa tương ứng, 𝑌𝑌𝑚𝑚

𝑛𝑛 (là các modular 
form với trọng số n và số chiều biểu diễn là m, cũng 
là hàm của modulus 𝑧𝑧),  được trình bày ở Bảng 1 và 
Bảng 2. Trong mô hình này, tất cả các trường và các 
modular form  𝑌𝑌𝑚𝑚

𝑛𝑛 đều là các đơn tuyến 1, 1’ hoặc 
1’’ của nhóm A4 modular, kể cả các lưỡng tuyến 
lepton phân cực trái 𝑙𝑙𝑒𝑒 , 𝑙𝑙𝜇𝜇, 𝑙𝑙𝜏𝜏. Mô hình chứa hai 
lưỡng tuyến Higgs, với trị trung bình chân không 
(VEV) lần lượt là  < ℎ𝑢𝑢 > =  𝜐𝜐𝑢𝑢/√2, < ℎ𝑑𝑑 > =
 𝜐𝜐𝑑𝑑/√2. Với 𝜐𝜐𝑢𝑢  =  𝜐𝜐 sin𝛽𝛽,  𝜐𝜐𝑑𝑑  =  𝜐𝜐 cos𝛽𝛽, 
�𝜐𝜐𝑢𝑢

2  + 𝜐𝜐𝑑𝑑
2 =  𝜐𝜐 =  246 GeV, trong đó 𝜐𝜐 là VEV của 

trường Higgs của SM.  Hai lưỡng tuyến Higgs này 
là đủ đê sinh khối lượng cho tất cả các hạt của mô 
hình.  Ở trên, đại lượng tan𝛽𝛽  là một trong các tham 
số siêu đối xứng, được cho bởi biểu thức  tan𝛽𝛽 =
𝜐𝜐𝑢𝑢
𝜐𝜐𝑑𝑑

.  Ngoài ra, để sinh khối lượng cho các hạt RHN 
nặng, mô hình cần một flavon với VEV là 
 < 𝜙𝜙 > =  𝜐𝜐𝜙𝜙. 

Trong mô hình này, cấu trúc hạt và các modular 
form tương ứng được thiết lập sao cho ma trận khối 
lượng của các lepton mang điện và của RHN là chéo. 
Điều này làm cho việc tính toán được đơn giản hóa, 
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ngoài ra, khi đó ma trận trộn lepton đồng nhất với 
ma trận trộn neutrino. 

Với cấu trúc hạt được cho như trên, siêu thế liên 
quan đến khối lượng của các lepton mang điện được 
cho bởi: 

𝑊𝑊𝑙𝑙 = 𝛼𝛼�𝑙𝑙𝑒̅𝑒𝐻𝐻𝑑𝑑𝑒𝑒𝑅𝑅 𝑌𝑌1
6� + 𝛽𝛽�𝑙𝑙𝜇̅𝜇𝐻𝐻𝑑𝑑𝜇𝜇𝑅𝑅 𝑌𝑌1

6�             

                 + 𝛾𝛾(𝑙𝑙𝜏̅𝜏𝐻𝐻𝑑𝑑𝜏𝜏𝑅𝑅 𝑌𝑌1
6)   

       = 𝐻𝐻𝑑𝑑  (𝑒𝑒𝐿𝐿� 𝜇𝜇𝐿𝐿��� 𝜏𝜏𝐿𝐿� ) �
𝛼𝛼𝛼𝛼1

6 0 0
0 𝛽𝛽𝑌𝑌1

6 0
0 0 𝛾𝛾𝛾𝛾1

6
� �

𝑒𝑒𝑅𝑅
𝜇𝜇𝑅𝑅
𝜏𝜏𝑅𝑅

�. (12) 

Từ phương trình (12), sau khi thực hiện các phép 
tính với trung bình chân không của các Higgss, ma 
trận khối lượng của các lepton mang điện được tìm 
thấy có dạng chéo như sau: 

𝑀𝑀𝑙𝑙 = 〈𝐻𝐻𝑑𝑑〉 �
𝛼𝛼𝑌𝑌1

6 0 0
0 𝛽𝛽𝑌𝑌1

6 0
0 0 𝛾𝛾𝑌𝑌1

6
� 

=
𝑣𝑣𝑑𝑑

√2
�

𝛼𝛼𝑌𝑌1
6 0 0

0 𝛽𝛽𝑌𝑌1
6 0

0 0 𝛾𝛾𝑌𝑌1
6

� 

= 𝑚𝑚𝑒𝑒 �
1 0 0
0 𝑥𝑥1𝑚𝑚𝑒𝑒 0
0 0 𝑥𝑥2𝑚𝑚𝑒𝑒

�           (13) 

với 𝑚𝑚𝑒𝑒 = 𝑣𝑣𝑑𝑑
√2

𝛼𝛼|𝑌𝑌1
6|, các hằng số tương tác 

𝛼𝛼, 𝛽𝛽, 𝛾𝛾 được xem là thực dương. Khối lượng các 
lepton mang điện là 𝑚𝑚𝑒𝑒 =  0,511 MeV, 𝑚𝑚𝜇𝜇 =
 105,7 MeV and 𝑚𝑚𝜏𝜏 =  1776,86 MeV (Esteban et 
al., 2020)  được sử dụng vào phương trình (13), từ 
đó có thể ước lượng được giá trị của hai tham số 𝑥𝑥1 
và 𝑥𝑥2 như sau: 𝑥𝑥1 = 𝑚𝑚𝜇𝜇/𝑚𝑚𝑒𝑒 ≈ 207 và 𝑥𝑥2 =
𝑚𝑚𝜏𝜏/𝑚𝑚𝑒𝑒 ≈ 3,477. 

Bảng 1. Phổ hạt của mô hình, các tích tương với các nhóm 𝑺𝑺𝑺𝑺(𝟐𝟐)𝑳𝑳, 𝑼𝑼(𝟏𝟏)𝒀𝒀, 𝑨𝑨𝟒𝟒 modular và các trọng số 
modular tương ứng 

Đối xứng 𝑙𝑙𝑒𝑒 𝑙𝑙𝜇𝜇 𝑙𝑙𝜏𝜏 𝑒𝑒𝑅𝑅 𝜇𝜇𝑅𝑅 𝜏𝜏𝑅𝑅 𝑁𝑁1 𝑁𝑁2 𝐻𝐻𝑢𝑢 𝐻𝐻𝑑𝑑 𝜙𝜙 
𝑆𝑆𝑆𝑆(2)𝐿𝐿 2 2 2 1 1 1 1 1 2 2 1 

𝑈𝑈(1)𝑌𝑌 −
1
2

 −
1
2

 −
1
2

 1 1 1 0 0 −
1
2

 −
1
2

 0 

𝐴𝐴4 1 𝟏𝟏′ 𝟏𝟏" 1 𝟏𝟏" 𝟏𝟏′ 1 𝟏𝟏′ 1 1 1 
-kI -5 -5 -5 -1 -1 -1 -1 -3 0 0 -2 

Bảng 2. Bảng các ma trận tương tác Yukawa, đều là các biểu diễn một chiều của đối xứng  
𝑨𝑨𝟒𝟒 modular và tương ứng là các trọng số modular 𝒌𝒌𝒀𝒀  

𝑌𝑌𝑚𝑚
𝑛𝑛 𝑌𝑌𝟏𝟏

4 𝑌𝑌𝟏𝟏′
4  𝑌𝑌𝟏𝟏

6 𝑌𝑌𝟏𝟏
8 𝑌𝑌𝟏𝟏′

8  𝑌𝑌𝟏𝟏"
8  𝑌𝑌𝟏𝟏

10 𝑌𝑌𝟏𝟏′
10 

𝐴𝐴4 1 𝟏𝟏′ 𝟏𝟏 1 𝟏𝟏′ 𝟏𝟏" 1 𝟏𝟏′ 
𝑘𝑘𝑌𝑌 4 4 6 8 8 8 10 10 

Siêu thế liên quan đến khu vực neutrino là 

𝑊𝑊𝜈𝜈
𝐼𝐼 = 𝑔𝑔1�𝑙𝑙𝑒̅𝑒𝐻𝐻𝑢𝑢𝑁𝑁1 𝑌𝑌1

6� + 𝑔𝑔2�𝑙𝑙𝑒̅𝑒𝐻𝐻𝑢𝑢𝑁𝑁2 𝑌𝑌1"
8 � 

      +𝑔𝑔3�𝑙𝑙𝜇̅𝜇𝐻𝐻𝑢𝑢𝑁𝑁2 𝑌𝑌1′
8� + 𝑔𝑔4�𝑙𝑙𝜏̅𝜏𝐻𝐻𝑢𝑢𝑁𝑁2 𝑌𝑌1

8�   
       +𝑦𝑦𝜙𝜙1𝜙𝜙𝑁𝑁1 𝑁𝑁1 𝑌𝑌1

4 + 𝑦𝑦𝜙𝜙2𝜙𝜙𝑁𝑁2 𝑁𝑁2 𝑌𝑌1′
8  

= 𝐻𝐻𝑢𝑢(𝑙̅𝑙𝑒𝑒 𝑙̅𝑙𝜇𝜇 𝑙̅𝑙𝜏𝜏) �
𝑔𝑔1𝑌𝑌1

6 𝑔𝑔2𝑌𝑌1"
8

0 𝑔𝑔3𝑌𝑌1′
8

0 𝑔𝑔4𝑌𝑌1
8

� �𝑁𝑁1
𝑐𝑐

𝑁𝑁2
𝑐𝑐�         (14) 

+�𝑁𝑁1 𝑁𝑁2 � �
𝑦𝑦𝜙𝜙1𝑣𝑣𝜙𝜙𝑌𝑌1

4 0
0 𝑦𝑦𝜙𝜙2𝑣𝑣𝜙𝜙𝑌𝑌1′

8� �
𝑁𝑁1

𝑁𝑁2
�. 

Trong đó 𝑔𝑔𝑖𝑖(𝑖𝑖 = 1, 2, 3, 4), 𝑔𝑔𝜙𝜙𝜙𝜙(𝑖𝑖 = 1, 2) là các 
hằng số tương tác. Từ phương trình (14), ta tính 
được ma trận khối lượng neutrino Dirac 𝑚𝑚𝐷𝐷 và ma 
trận khối lượng Majorana của các RHN 𝑀𝑀𝑅𝑅 như sau: 

𝑚𝑚𝐷𝐷 = 𝑣𝑣𝑢𝑢
√2

�
𝑔𝑔1𝑌𝑌1

6 𝑔𝑔2𝑌𝑌1"
8

0 𝑔𝑔3𝑌𝑌1′
8

0 𝑔𝑔4𝑌𝑌1
8

�,                  (15) 

𝑀𝑀𝑅𝑅 = �
𝑦𝑦𝜙𝜙1𝑣𝑣𝜙𝜙𝑌𝑌1

4 0
0 𝑦𝑦𝜙𝜙2𝑣𝑣𝜙𝜙𝑌𝑌1′

8 
� ≡ 𝑀𝑀 �

𝑌𝑌1
4 0

0 𝑌𝑌1′
8� . (16) 

Ở đây, để cho đơn giản, ta cho 𝑦𝑦𝜙𝜙1𝑣𝑣𝜙𝜙 = 𝑦𝑦𝜙𝜙2𝑣𝑣𝜙𝜙 =
𝑀𝑀 là thang khối lượng của RHN, vì các mudular 
form 𝑌𝑌𝑚𝑚

𝑛𝑛 có độ lớn cỡ đơn vị. Đến đây, ma trận khối 
lượng của các neutrino nhẹ tính được từ cơ chế SS:  

   𝑚𝑚𝜈𝜈1 = −𝑚𝑚𝐷𝐷𝑀𝑀𝑅𝑅
−1𝑚𝑚𝐷𝐷

𝑇𝑇  
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𝑚𝑚0

⎝

⎜
⎜
⎜
⎛

(𝑔𝑔1𝑌𝑌1
6)2

𝑌𝑌1
4 +

(𝑔𝑔2𝑌𝑌
1"
8 )2

𝑌𝑌1′
8

𝑔𝑔2𝑌𝑌
1"
8 𝑔𝑔3𝑌𝑌1′

8

𝑌𝑌1′
8

𝑔𝑔2𝑌𝑌
1"
8 𝑔𝑔4𝑌𝑌1

8

𝑌𝑌1′
8

𝑔𝑔2𝑌𝑌
1"
8 𝑔𝑔3𝑌𝑌1′

8

𝑌𝑌1′
8

(𝑔𝑔3𝑌𝑌1′
8 )2

𝑌𝑌1′
8

𝑔𝑔3𝑌𝑌1′
8 𝑔𝑔4𝑌𝑌1

8

𝑌𝑌1′
8

𝑔𝑔2𝑌𝑌
1"
8 𝑔𝑔4𝑌𝑌1

8

𝑌𝑌1′
8

𝑔𝑔3𝑌𝑌1′
8 𝑔𝑔4𝑌𝑌1

8

𝑌𝑌1′
8

(𝑔𝑔4𝑌𝑌1
8)2

𝑌𝑌1′
8 ⎠

⎟
⎟
⎟
⎞

  

(17) 

với 𝑚𝑚0 = 𝜐𝜐𝑢𝑢
2

2𝑀𝑀
 là thang khối lượng neutrino, có thề 

được ước lượng  𝑚𝑚0 ≈ �∆𝑚𝑚31
2  ~ 0,05 eV. Ma trận 

khối lượng neutrino ở (17) có cột (dòng) thứ hai và 
thứ ba tỉ lệ nhau với hệ số 𝑔𝑔3 /𝑔𝑔4 .  Với cấu trúc như 
vậy dẫn đến góc trộn 𝜃𝜃13 = 00, do đó không phù 
hợp với thực nghiệm được thể hiện ở Bảng 3. Do đó, 
cấu trúc ma trận khối lượng trên cần được phá vỡ để 
sinh ma trận trộn phù hợp thực nghiệm. Để đạt được 
mục tiêu này, mô hình toán tử Weinberg 5 chiều 
(Weinberg dimension-5 operator) được bổ sung vào 
để sinh khối lượng neutrino, xuất phát từ siêu thế: 

𝑊𝑊𝜈𝜈
𝐼𝐼𝐼𝐼 =

1
Λ

�𝑎𝑎1𝑌𝑌1
10𝑙𝑙𝑒̅𝑒𝐻𝐻𝑢𝑢𝐻𝐻�𝑢𝑢𝑙𝑙𝑒𝑒 + 𝑎𝑎2𝑌𝑌1′

10(𝑙𝑙𝑒̅𝑒𝐻𝐻𝑢𝑢𝐻𝐻�𝑢𝑢𝑙𝑙𝜏𝜏

+ 𝑙𝑙𝜏̅𝜏𝐻𝐻𝑢𝑢𝐻𝐻�𝑢𝑢𝑙𝑙𝑒𝑒� + 𝑎𝑎3𝑌𝑌1′
10𝑙𝑙𝜇̅𝜇𝐻𝐻𝑢𝑢𝐻𝐻�𝑢𝑢𝑙𝑙𝜇𝜇 

+𝑎𝑎4𝑌𝑌1
10(𝑙𝑙𝜇̅𝜇𝐻𝐻𝑢𝑢𝐻𝐻�𝑢𝑢𝑙𝑙𝜏𝜏 + 𝑙𝑙𝜏̅𝜏𝐻𝐻𝑢𝑢𝐻𝐻�𝑢𝑢𝑙𝑙𝜇𝜇)] 

= 𝐻𝐻𝑢𝑢
2�𝑙𝑙𝑒̅𝑒 𝑙𝑙𝜇̅𝜇 𝑙𝑙𝜏̅𝜏� �

𝑎𝑎1𝑌𝑌1
10 0 𝑎𝑎2𝑌𝑌1′

10

0 𝑎𝑎3𝑌𝑌1′
10 𝑎𝑎4𝑌𝑌1

10

𝑎𝑎2𝑌𝑌1′
10 𝑎𝑎4𝑌𝑌1

10 0
�  �

𝑙𝑙𝑒𝑒
𝑙𝑙𝜇𝜇
𝑙𝑙𝜏𝜏

�. 

Từ đây ta rút ra đóng góp vào ma trận khối lượng 
neutrino tử toán tử Weinberg 5 chiều như sau:              

       𝑚𝑚𝜈𝜈2 = 𝑣𝑣𝑢𝑢
2

Λ
�

𝑎𝑎1𝑌𝑌1
10 0 𝑎𝑎2𝑌𝑌1′

10

0 𝑎𝑎3𝑌𝑌1′
10 𝑎𝑎4𝑌𝑌1

10

𝑎𝑎2𝑌𝑌1′
10 𝑎𝑎4𝑌𝑌1

10 0
� 

               ≡ 𝑚𝑚0 �
𝑎𝑎1𝑌𝑌1

10 0 𝑎𝑎2𝑌𝑌1′
10

0 𝑎𝑎3𝑌𝑌1′
10 𝑎𝑎4𝑌𝑌1

10

𝑎𝑎2𝑌𝑌1′
10 𝑎𝑎4𝑌𝑌1

10 0
�    (18) 

Một lần nữa, 𝑚𝑚0 là thang khối lượng neutrino, 
giống như trên. Chú ý rằng, ở hai phương trình (17) 
và (18), các tham số 𝑎𝑎𝑖𝑖, 𝑔𝑔𝑖𝑖 và 𝑌𝑌𝑛𝑛

𝑚𝑚 có giá trị cỡ đơn 
vị, do đó hệ số của ma trận khối lượng 𝑚𝑚𝜈𝜈1, 𝑚𝑚𝜈𝜈2 có 
thể lấy xấp xỉ thang khối lượng neutrino nhẹ, 𝑚𝑚0. 
Với sự đóng góp này, ma trận khối lượng neutrino 
toàn phần lúc này là: 

𝒎𝒎𝝂𝝂 =  𝒎𝒎𝝂𝝂𝝂𝝂  +  𝒎𝒎𝝂𝝂𝝂𝝂.          (19) 

Để tìm các miền giá trị của các tham số của mô 
hình (ở hai phương trình (17) và (18)), sao cho các 
giá trị tiên đoán cho khu vực neutrino phù hợp với 

dữ liệu thí nghiệm, trước hết cần thực hiện chéo hóa 
ma trận 𝑚𝑚𝜈𝜈 để rút ra các trạng thái riêng vật lý của 
các neutrino. Tuy nhiên, để đơn giản hóa việc tính 
toán, ma trận Hermite 𝑚𝑚𝜈𝜈𝑚𝑚𝜈𝜈

† được chéo hóa như 
sau: 

𝑈𝑈𝜈𝜈
†�𝑚𝑚𝜈𝜈𝑚𝑚𝜈𝜈

†�𝑈𝑈𝜈𝜈  = Diag. (𝑚𝑚1
2, 𝑚𝑚2

2, 𝑚𝑚3
2).      (20) 

Từ đây, ta nhận được ma trận trộn lepton là 
𝑈𝑈𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑈𝑈𝜈𝜈.  

Bảng 3. Bảng số liệu thí nghiệm về khối lượng 
neutrino và các góc trộn lepton cho 
trường hợp phân bậc tự nhiên của khối 
lượng các neutrino  
 Best fit 3σ 

sin2θ12 0,304 0,269 – 0,343 
sin2θ13 0,02219 0,02032 – 0,02410 
sin2θ23 0,573 0,415 – 0,616 
𝜹𝜹 [𝟎𝟎] 197 120 – 369 

∆𝒎𝒎𝟐𝟐𝟐𝟐
𝟐𝟐 �𝟏𝟏𝟏𝟏−𝟓𝟓𝒆𝒆𝒆𝒆𝟐𝟐� 7,42 6,82 – 8,04 

∆𝒎𝒎𝟑𝟑𝟑𝟑
𝟐𝟐 [𝟏𝟏𝟏𝟏−𝟑𝟑𝒆𝒆𝒆𝒆𝟐𝟐] 2,517 2,435 – 2,598 

(Nguồn: Esteban et al., 2019) 

Ma trận khối lượng neutrino ở phương trình (19), 
phụ thuộc và 10 tham số (thực dương) là 
𝒈𝒈𝒊𝒊(𝒊𝒊 = 𝟏𝟏, 𝟐𝟐, 𝟑𝟑, 𝟒𝟒), 𝒂𝒂𝒊𝒊(𝒊𝒊 = 𝟏𝟏, 𝟐𝟐, 𝟑𝟑, 𝟒𝟒) và 
𝑹𝑹𝑹𝑹[𝒛𝒛], 𝑰𝑰𝑰𝑰[𝒛𝒛]. Sử dụng dữ liệu thí nghiệm độ tin cậy 
𝟑𝟑𝟑𝟑 cho ở Bảng 3 vào biểu thức (19), cụ thể là các 
biểu thức (17) và (18), ta có thể tính được các miền 
giá trị của các tham số của mô hình (của khu vực 
neutrino) và được trình bày ở các hình vẽ bên dưới.  

Kết quả thể hiện ở Hình 1 cho thấy các miền giá 
trị của hai tham số 𝐑𝐑𝐑𝐑(𝝉𝝉) và 𝐈𝐈𝐈𝐈(𝝉𝝉), đó là −𝟎𝟎, 𝟏𝟏𝟏𝟏 ≤
𝐑𝐑𝐑𝐑(𝒛𝒛) ≤ 𝟎𝟎, 𝟏𝟏𝟏𝟏, 1,05≤ 𝐈𝐈𝐈𝐈(𝒛𝒛) ≤ 𝟏𝟏, 𝟏𝟏𝟏𝟏.  

 
Hình 1. Miền giá trị của 𝐑𝐑𝐑𝐑(𝐳𝐳) 𝐯𝐯à 𝐈𝐈𝐈𝐈(𝐳𝐳), là 

phần thực và phần ảo của modulus z 
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 Hình 2. Miền giá trị của hai tham số 𝒂𝒂𝟏𝟏và 𝒂𝒂𝟐𝟐 

của mô hình 

 
 Hình 3. Miền giá trị của hai tham số 𝒂𝒂𝟑𝟑 và 𝒂𝒂𝟒𝟒 

 
Hình 4. Miền giá trị của hai tham số 𝒈𝒈𝟏𝟏và 𝒈𝒈𝟐𝟐 

Kết quả được thể hiện ở Hình 2 đến Hình 5 cho 
thấy miền giá trị cho phép của 𝑎𝑎𝑖𝑖 và 𝑔𝑔𝑖𝑖 .  Có thể thấy 
được miền giá trị cho phép của các tham số 𝑎𝑎𝑖𝑖 và 
 𝑔𝑔𝑖𝑖   lượt là: 0,09 ≤ 𝑎𝑎1 ≤ 0,51, 0,10 ≤ 𝑎𝑎2 ≤ 0,65, 
0,18 ≤ 𝑎𝑎3 ≤ 0,55, 0,50 ≤ 𝑎𝑎4 ≤ 0,88, 0,15 ≤
𝑔𝑔1 ≤ 0,35, 0,13 ≤ 𝑔𝑔2 ≤ 0,24, 0,60 ≤ 𝑔𝑔3 ≤ 0,94 
và 0,65 ≤ 𝑔𝑔4 ≤ 0,95. 

 
Hình 5. Miền giá trị của hai tham số 𝒈𝒈𝟑𝟑 và 𝒈𝒈𝟒𝟒 

Như vậy, đến đây mô hình đối xứng 𝐴𝐴4 modular 
đã được xây dựng thành công. Thông qua việc tính 
số, chúng tôi thấy rằng mô hình nghiên cứu đã giải 
thích thỏa đáng các dữ liệu thực nghiệm, bao gồm 
khối lượng các lepton mang điện; khối lượng và các 
tham số trộn của các neutrino. Cũng thông qua tính 
sối, các miền giá trị của các tham số của mô hình 
cũng được tìm thấy. Tiếp theo sau đây, quá trình 
leptogenesis sẽ được khảo sát để đánh gía khả năng  
của mô hình trong giải thích số liệu quan sát thực 
nghiệm về bất đối xứng vật chất – phản vật chất của 
Vũ trụ. 

4. LEPTOGENESIS 

Để nghiên cứu quá trình sinh số lepton (còn gọi 
là quá trình) leptogenesis do quá trình phân rã vi 
phạm CP của các RHN, trước tiên, ma trận khối 
lượng 𝑀𝑀𝑅𝑅 cần được chéo hóa để đưa các RHN về 
các trạng thái riêng vật lý: 

𝑈𝑈𝑅𝑅
†𝑀𝑀𝑅𝑅𝑈𝑈𝑅𝑅

∗ = Diag. (𝑀𝑀1, 𝑀𝑀2),       (21) 

trong đó  

𝑈𝑈𝑅𝑅 = �𝑒𝑒𝑖𝑖(𝜑𝜑2−𝜑𝜑1)/2 0
0 1

�,                    (22) 

với 𝑀𝑀1 = 𝑀𝑀|𝑌𝑌1
4|,  𝑀𝑀2 = 𝑀𝑀|𝑌𝑌1′

8| và     𝜑𝜑1 =
𝐴𝐴𝐴𝐴𝐴𝐴[𝑌𝑌1

4], 𝜑𝜑2 = 𝐴𝐴𝐴𝐴𝐴𝐴[𝑌𝑌1′
8] . Từ đây, đẽ dàng nhận 

thấy các khối lượng 𝑀𝑀1, 𝑀𝑀2 phụ thuộc chủ đạo vào 
tham số 𝑧𝑧, bởi vì bậc khối lượng của các neutrino 
nặng phân cực phài, Λ, được chọn theo mục đích vật 
lý khi xây dựng mô hình. Ngoài ra, giả sử rằng 𝑀𝑀1 ≈
𝑀𝑀2, dẫn đến leptogenesis nhận đóng góp từ phân rã 
của cả hai thế hệ RHN. Ngoài, khi làm việc trong hệ 
cơ sở để mà các lepton mang điện và các neutrino 
nặng phân cực phài ở các trạng thái vật lý (tức là 
𝑀𝑀𝑙𝑙 and 𝑀𝑀𝑅𝑅 là chéo và thực) thì ma trận tương tác 
Yukawa của neutrino Dirac biến đổi như sau:  𝑌𝑌𝜈𝜈  →
 𝑌𝑌�𝜈𝜈 = 𝑈𝑈𝑙𝑙

†𝑌𝑌𝜈𝜈𝑈𝑈𝑅𝑅
∗ , trong đó 𝑌𝑌𝜈𝜈 =  √2𝑚𝑚𝐷𝐷/𝜐𝜐𝑢𝑢 và ở 
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nghiên cứu này, như đã chỉ ra bên trên,  𝑈𝑈𝑙𝑙  là ma 
trận đơn vị. 

Quá trình sinh lepton (leptogenesis) khởi phát 
bằng quá trình phân rã bất đối xứng CP của các 
neutrino nặng phân cực phài. Thông qua đó, số 
lepton và số phản lepton được sinh ra là không bằng 
nhau, ta nói bất đối xứng lepton (lepton asymmetry) 
được hình thành. Nếu quá trình rã của các neutrino 
phân cực phải diễn ra khi Vũ trụ có nhiệt độ vào cỡ 
𝑇𝑇~𝑀𝑀 > (1 + tan2𝛽𝛽) ∙ 1012 GeV thì sản phẩm phân 
rã ra các thể hệ lepton khác nhau là như nhau, người 
ta gọi trường hợp này là leptogenesis phổ quát 
(conventional leptogenesis) (Ahn, 2010). Nếu khối 
lượng của các neutrino phân cực phải thỏa M ≤
(1 + tan2𝛽𝛽) ∙ 1012GeV thì quá trình rã ra các lepton 
thế hệ khác nhau sẽ cho đóng góp khác nhau vào bất 
đối xứng lepton, khi đó ta có leptogenesi có tính 
hương vị (flavored leptogenesis). Nếu điều kiện này 
xảy ra, như trong bài báo này, thì bất đối xứng CP 
được tạo ra do quá trình rã của neutrino phân cực 
phai thứ i được cho như sau (Nguyen, 2014): 

𝜀𝜀𝑖𝑖
𝛼𝛼 = 1

8𝜋𝜋𝐻𝐻𝑖𝑖𝑖𝑖
𝐼𝐼𝐼𝐼[ 𝐻𝐻𝑖𝑖𝑖𝑖(𝑌𝑌�)𝑖𝑖𝑖𝑖

∗ (𝑌𝑌�)𝑗𝑗𝑗𝑗]𝑔𝑔(
𝑀𝑀𝑗𝑗

2

𝑀𝑀𝑖𝑖
2),        (23) 

với 𝒊𝒊 ≠ 𝒋𝒋, 𝐯𝐯à  𝑯𝑯 = 𝒀𝒀�𝝂𝝂
†𝒀𝒀�𝝂𝝂. Hàm 𝒈𝒈(𝒙𝒙) được là các 

đóng góp từ các giản đồ một vòng vào 𝜺𝜺𝒊𝒊
𝜶𝜶, tính được 

như sau: 

𝒈𝒈 �
𝑴𝑴𝒋𝒋

𝟐𝟐

𝑴𝑴𝒊𝒊
𝟐𝟐� ≡ 𝒈𝒈𝒊𝒊𝒊𝒊(𝒙𝒙) = √𝒙𝒙 � 𝟐𝟐

𝟏𝟏−𝒙𝒙
− 𝒍𝒍𝒍𝒍 𝟏𝟏+𝒙𝒙

𝒙𝒙
�.        (24) 

Bên cạnh bất đối xứng CP 𝜀𝜀𝑖𝑖
𝛼𝛼, để tìm được bất 

đối xứng vật chất – phản vật chất, chúng ta cần phải 
quan tâm đến các tác động suy giảm 𝜀𝜀𝑖𝑖

𝛼𝛼 từ sự phân 
rã ngược của các neutrino phân cực phải thứ i ra 
lepton thế hệ α (α = e, 𝜇𝜇, 𝜏𝜏). Sự đóng  góp này được 
đặc trưng tham số suy giảm (washout 
parameter) 𝐾𝐾𝑖𝑖

𝛼𝛼. Tham số 𝐾𝐾𝑖𝑖
𝛼𝛼 tính được được như 

dưới đây (Nguyen, 2014): 

𝑲𝑲𝒊𝒊
𝜶𝜶 = 𝜞𝜞𝒊𝒊

𝜶𝜶

𝑯𝑯(𝑴𝑴𝒊𝒊)
= 𝒎𝒎� 𝒊𝒊

𝜶𝜶

𝒎𝒎∗
 ,            (23) 

trong đó: 𝒎𝒎� 𝒊𝒊
𝜶𝜶 được định nghĩa 𝒎𝒎� 𝒊𝒊

𝜶𝜶 =
𝝊𝝊𝒖𝒖

𝟐𝟐(𝒀𝒀�𝝂𝝂)𝒊𝒊𝒊𝒊(𝒀𝒀�𝝂𝝂
∗ )𝒊𝒊𝒊𝒊

𝑴𝑴𝒊𝒊
  với  𝒎𝒎∗ 𝐥𝐥à khối lượng hiệu dụng được 

cho bởi biểu thức  𝒎𝒎∗ = 𝟏𝟏𝟏𝟏𝝅𝝅𝟓𝟓/𝟐𝟐

𝟑𝟑√𝟓𝟓 �𝒈𝒈∗
𝝊𝝊𝒖𝒖

𝟐𝟐

𝑴𝑴𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷
 , 

𝑴𝑴𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 = 𝟏𝟏, 𝟐𝟐𝟐𝟐. 𝟏𝟏𝟎𝟎𝟏𝟏𝟏𝟏GeV là khối lượng 
Planck.  

 𝛤𝛤𝑖𝑖
𝛼𝛼là tốc độ rã riêng của kênh rã 𝑁𝑁𝑖𝑖 → 𝑙𝑙𝛼𝛼𝜑𝜑†, 

𝐻𝐻(𝑀𝑀𝑖𝑖) được gọi là hằng số Hubble và cuối cùng, g*

=288,75 là số bậc tự do hiệu dụng của mô hình khi  
nhiệt độ Vũ trụ vào cỡ 𝑇𝑇 = 𝑀𝑀𝑖𝑖.   

Đến đây, bất đối xứng CP do phân rã của 
neutrino phân cực phải 𝑁𝑁𝑖𝑖 là 𝜀𝜀𝑖𝑖

𝛼𝛼 và tham số suy giảm 
𝐾𝐾𝑖𝑖

𝛼𝛼 đã được chỉ ra. Từ đây giá trị tiên đoán của mô 
hình cho bất đối xứng baryon cho trường hợp khối 
lượng của RHN thỏa M ≤ (1 + tan2𝛽𝛽) ∙ 109GeV 
được tính bằng công thức (Nguyen, 2014): 

𝜂𝜂𝐵𝐵 ≃ −10−2 ∑ �𝜀𝜀𝑖𝑖
𝑒𝑒𝜅𝜅𝑖𝑖

𝑒𝑒 � 93
110

𝐾𝐾𝑖𝑖
𝑒𝑒� +𝑁𝑁𝑖𝑖

𝜀𝜀𝑖𝑖
𝜇𝜇𝜅𝜅𝑖𝑖

𝜇𝜇 �19
30

𝐾𝐾𝑖𝑖
𝜇𝜇� +  𝜀𝜀𝑖𝑖

𝜏𝜏𝜅𝜅𝑖𝑖
𝜏𝜏 �19

30
𝐾𝐾𝑖𝑖

𝜏𝜏��.   (24) 

Còn trong trường M thỏa điều kiện (1 +
tan2 𝛽𝛽) ⋅ 109GeV ≤ 𝑀𝑀 ≤ (1 + tan2 𝛽𝛽) ⋅
1012 GeV thì: 

𝜼𝜼𝑩𝑩 ≃ −𝟏𝟏𝟎𝟎−𝟐𝟐 ∑ �𝜺𝜺𝒊𝒊
𝟐𝟐𝜿𝜿𝒊𝒊

𝟐𝟐 �𝟓𝟓𝟓𝟓𝟓𝟓
𝟕𝟕𝟕𝟕𝟕𝟕

𝑲𝑲𝒊𝒊
𝟐𝟐� +𝑵𝑵𝒊𝒊

𝜺𝜺𝒊𝒊
𝝉𝝉𝜿𝜿𝒊𝒊

𝝉𝝉 �𝟒𝟒𝟒𝟒𝟒𝟒
𝟕𝟕𝟕𝟕𝟕𝟕

𝑲𝑲𝒊𝒊
𝝉𝝉�� (25) . 

Trong phương trình (25), các tham số được cho 
bởi 

𝜺𝜺𝒊𝒊
𝟐𝟐 = 𝜺𝜺𝒊𝒊

𝒆𝒆 + 𝜺𝜺𝒊𝒊
𝝁𝝁  𝐚𝐚𝐚𝐚𝐚𝐚 𝑲𝑲𝒊𝒊

𝟐𝟐 = 𝑲𝑲𝒊𝒊
𝒆𝒆 + 𝑲𝑲𝒊𝒊

𝝁𝝁. Ở hai công 
thức  (24) và (25), hệ số 𝜿𝜿𝒊𝒊

𝜶𝜶 được định nghĩa: 

𝜅𝜅𝑖𝑖
𝛼𝛼 ≃ (8.25

𝐾𝐾𝑖𝑖
𝛼𝛼 + (𝐾𝐾𝑖𝑖

𝛼𝛼

0.2
)1.16)−1.               (26) 

 
Hình 6. Giá trị của BAU, 𝛈𝛈𝐁𝐁, tính toán bởi mô 

hình biểu diễn theo phần thực 𝐑𝐑𝐑𝐑(𝒛𝒛) 

Đến đây, các dữ kiện phục vụ cho tính số bất đối 
xứng baryon BAU, 𝛈𝛈𝐁𝐁, đã được chuẩn bị đầy đủ. 
Miền giá trị của các tham số của mô hình đã tính tìm 
mục 3 sẽ được vận dụng cho việc tính số. Như trình 
bày ở trên, bất đối xứng baryon, hay nói cách khác 
là của BAU trong nghiên cứu này, có sự góp phần 
của cả hai thế hệ neutrino phân cực phải, 𝑵𝑵𝟏𝟏 và 𝑵𝑵𝟐𝟐. 
Các giá trị của  𝛈𝛈𝐁𝐁 tính toán từ mô hình được trình 
bày trên Hình 6 và Hình 7, tương ứng theo Re(z) và 
Im(z), là phần thực và ảo của z. Trong đó thang khối 
lượng của các neutrino phân cực phải đã chọn là  
𝐌𝐌 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 GeV, tham số siêu đối xứng đã dùng là 
𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 = 𝟑𝟑𝟑𝟑. Trong các hình vẽ này, đường nằm 
ngang, đứt nét là giới hạn của số liệu thực nghiệm 



Tạp chí Khoa học Đại học Cần Thơ   Tập 62, Số 1A (2026): 99-108 

107 

về đọ lớn của BAU,  𝟐𝟐 ∙ 𝟏𝟏𝟏𝟏−𝟏𝟏𝟏𝟏  ≤ 𝛈𝛈𝐁𝐁 ≤ 𝟏𝟏𝟏𝟏−𝟗𝟗 
(Fields et al., 2020). Đường màu xanh liền nét là giá 
trị trung bình thống kê (the best fit value) của BAU, 
𝛈𝛈𝐁𝐁 = 𝟔𝟔. 𝟐𝟐 ∙ 𝟏𝟏𝟏𝟏−𝟏𝟏𝟏𝟏. 

 
Hình 7. Giá trị của BAU, 𝛈𝛈𝐁𝐁, tính toán bởi mô 

hình biểu diễn theo phần ảo 𝐈𝐈𝐈𝐈(𝒛𝒛) 

Với các kết quả số biểu diễn trên Hình 6 và Hình 
7, có thể nhận định được rằng, mô hình nghiên cứu, 
thông qua quá trình leptogenesis của sự phân rã của 
các neutrino phân cực phải, đã giải thích thành công 
bất đối xứng bảyon của Vũ trụ. Trong đó, các 
neutrino phân cực phải có khối lượng vào khoảng 
𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 GeV hoặc lớn hơn. 

5. KẾT LUẬN 

Các mô hình đối xứng gián đoạn đã rất thành 
công trong giải thích cấu trúc trộn của các lepton, 
tuy nhiên lớp mô hình này còn điểm hạn chế là khó 
kiểm chứng bằng thực nghiệm và có quá nhiều số 
hạng tự do. Để khắc phục hạn chế này, lớp các mô 
hình chuẩn mở rộng bằng bằng các nhóm đối xứng 
modular được quan tâm nghiên cứu trong thời gian 
gần đây. Trong bài báo này chúng tôi nghiên cứu 
một phân bản theo hướng nghiên cứu đối xứng 
modular, mà cụ thể là đối xứng 𝐴𝐴4 modular, trong 
phiên bản siêu đối xứng tối thiểu đồng hành với 
công thức SS tối thiểu, giới hạn cho các hạt lepton. 
Mô hình sử dụng trong công trình này đã giải thich 
thỏa đáng số liệu thí nghiệm về các lepton, ở mức 
độ 3σ. Từ đó, không gian tham số của mô hình 
nghiên cứu cũng đã được tính. Với không gian tham 
số này, quá trình leptogenesis có tính đến sự đóng 
góp riêng biệt các lepton thế hệ trong quá trình phân 
rã của RHN được khảo sát nhằm tính bất đối xứng 
baryon, BAU. Với khối lượng các neutrino phân cực 
phải lớn hơn hoặc bằng 1010 GeV,  tham số  tan𝛽𝛽 =
 30, mô hình cho cho giá trị tiên đoán của ηB phù 
hợp với quan sát thực nghiệm. Ở nghiên cứu này, 
chúng tôi thực hiện tính toán cho trường hợp phân 
bậc tự nhiên trong khối lượng của những neutrino 
nhẹ. Đối với trường hợp các neutrino nhẹ có khối 
lượng tuân theo phân bậc nghịch, chúng ta hoàn toàn 
có thể nghiên cứu tương tự. 
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