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TÓM TẮT 
Bệnh ung thư đại trực tràng là căn bệnh nguy hiểm đến sức khỏe 
con người nếu không phát hiện và điều trị sớm. Việc phân tích dữ 
liệu vi sinh vật trong môi trường đường ruột có thể hỗ trợ cho chẩn 
đoán bệnh này. Cách tiếp cận chọn lọc vi sinh vật bằng phương 
pháp giải thích kết quả của thuật toán trí tuệ nhân tạo bằng các 
giải thích phản thực đa dạng (Diverse Counterfactual 
Explanations-DCE) được đề xuất trong bài viết. Kết quả phân lớp 
với giải thuật máy học cổ điển như Rừng ngẫu nhiên và Gradient 
Boosting trên dữ liệu chỉ dưới 3% tổng số đặc trưng ban đầu, đã 
cho kết quả 0,7759, 0,8055, 0,8093 và 0,7923 với độ đo AUC trên 
các bộ dữ liệu thu thập từ nhóm người Áo, Mỹ, Trung Quốc, và 
Đức-Pháp. Kết quả này tốt hơn so với trên tập dữ liệu ban đầu với 
hơn 1900 loài vi sinh vật. 

Từ khóa: Máy học cổ điển, lựa chọn đặc trưng, ung thư đại trực 
tràng, vi sinh đường ruột 

ABSTRACT 
Colorectal cancer is a dangerous disease that can endanger 
human health if not detected and treated early. Analysis of 
microbial data in the intestinal environment can support the 
diagnosis of this disease. This article proposes a microbial 
selection approach by Diverse Counterfactual Explanations 
(DCE). The classification results with classical machine learning 
algorithms such as Random Forest and Gradient Boosting on data 
with less than 3% of the total original features are 0.7759, 0.8055, 
0.8093, 0.7923, on Austria, American, Chinese, and German-
French cohorts, respectively. These results are better than on the 
original datasets with more than 1900 microbial species. 

Keywords: Colorectal cancer, classical machine learning, feature 
selection, intestinal microbiota 
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1. GIỚI THIỆU 

Metagenomics là thuật ngữ được giới thiệu trong 
Handelsman et al. (1998) để chỉ các nghiên cứu về 
khai thác thông tin di truyền từ vi sinh vật trong môi 
trường, từ đó góp phần thúc đẩy việc nghiên cứu 
những ảnh hưởng của vi sinh vật này trong môi 
trường mà chúng đang sống. Trong hầu hết trường 
hợp, sức khỏe của con người và các sinh vật khác 
đều bị ảnh hưởng bởi vi khuẩn. Vì thế 
metagenomics cũng được nghiên cứu để phục vụ 
trong hoạt động chăm sóc sức khỏe con người khi 
cơ thể con người cũng có rất nhiều hệ vi sinh vật 
đang sinh sống như: trên da, trong ruột, khoang 
miệng, khoang mũi, mắt, và các bộ phận khác. Theo 
kết quả nghiên cứu của Moges and Mengistu (2024) 
và Martín et al. (2014), các vi sinh vật này có ảnh 
hưởng lớn đến sức khỏe cả hai mặt tốt lẫn xấu, ảnh 
hưởng trên hiệu quả sử dụng thuốc, khả năng hấp 
thu dinh dưỡng của con người. Cùng với việc xác 
định rõ đóng góp của hệ vi sinh vật cho sức khỏe, 
phát hiện, điều trị bệnh cho các cá thể, không chỉ với 
người mà động vật, thực vật cũng được phát triển 
các phương pháp điều trị mới trên cơ sở các kiến 
thức metagenomics.  

Metagenomics được áp dụng hỗ trợ cho hoạt 
động y tế. Nguyen et al. (2021) đã phân tích 
metagenomic virus trong dịch não tủy từ bệnh nhân 
bị nhiễm trùng hệ thần kinh trung ương, Central 
Nervous System (CNS) cấp tính không rõ nguyên 
nhân tại Việt Nam đã sử dụng công nghệ giải trình 
tự thế hệ mới. Nghiên cứu đã phát hiện 8 loài virus 
trong 52,4 mẫu dịch não tủy, nhưng sau khi xác nhận 
bằng Polymerase Chain Reaction (PCR), tỷ lệ phát 
hiện giảm xuống còn 14,7 với enterovirus là loại 
virus phổ biến nhất. Kết quả cho thấy gánh nặng lâm 
sàng của enterovirus tại Việt Nam và nhấn mạnh 
những thách thức trong việc xác định tác nhân virus 
hợp lý trong dịch não tủy của bệnh nhân nhiễm trùng 
CNS. Tang et al. (2025) đã cung cấp những đóng 
góp quan trọng trong việc đánh giá hiệu quả thực tế 
của kỹ thuật giải trình tự metagenomics 
(metagenomic Next-Generation Sequencing - 
mNGS), từ đó tiềm năng lớn của kỹ thuật này trong 
hỗ trợ chẩn đoán lâm sàng được chứng minh. Thêm 
vào đó, tầm quan trọng của việc sử dụng mNGS một 
cách chọn lọc và hợp lý, để tối ưu chi phí và độ chính 
xác chẩn đoán được nhấn mạnh. Những phát hiện 
này mang ý nghĩa thực tiễn cao, giúp các cơ sở y tế 
xây dựng chiến lược chẩn đoán phù hợp và nâng cao 
hiệu quả chăm sóc bệnh nhân dựa trên phân tích dữ 
liệu metagenomic. Với kết quả nghiên cứu trong 
Kim et al. (2020), tính cấp thiết của việc ứng dụng 
metagenomics với các thành phần vi sinh vật trong 

chẩn đoán ung thư đại trực tràng thông qua phân tích 
hệ vi sinh vật đường ruột được nhấn mạnh cho thấy 
dữ liệu này là cơ sở quan trọng để chẩn đoán bệnh 
ung thư đại trực tràng. 

Lựa chọn đặc trưng được chú trọng nghiên cứu 
trên dữ liệu Metagenomic, như Karwowska et al. 
(2025) đã chỉ rõ tầm quan trọng của hành động này 
trên dữ liệu metagenomic. Họ đã cho thấy chỉ cần 
trích lọc 1 bộ nhỏ có thể tiến hành phân lớp chính 
xác. Trong nghiên cứu Gungor et al. (2023), nhóm 
tác giả đã cho rằng quá trình lựa chọn đặc trưng trên 
metagenome khi thực hiện chẩn đoán bệnh dựa có 
thể giúp chúng ta hiểu rõ hơn về các cơ chế phát 
triển bệnh, từ đây có thể làm cơ sở cho việc điều trị 
hiệu quả. Theo LaPierre et al. (2019), nhánh nghiên 
cứu về lựa chọn đặc trưng để hỗ trợ chẩn đoán bệnh 
dựa trên metagenomics vẫn chưa được nghiên cứu 
nhiều nhưng đây là bước quan trọng và có thể được 
dùng để phát triển, cải thiện khả năng giải thích cho 
kết quả chẩn đoán trong y học cá thể hóa. 

Explainable Artificial Intelligence (xAI) là một 
lĩnh vực quan trọng trong khoa học dữ liệu. xAI 
cung cấp các phương pháp và công cụ giúp con 
người hiểu và giải thích được các quyết định của mô 
hình học máy. Trong phân tích dữ liệu 
metagenomic, Machine Learning (ML)- máy học 
đóng vai trò quan trọng không chỉ trong các ứng 
dụng dữ liệu DeoxyriboNucleic Acid (DNA) mà còn 
trong các loại dữ liệu khác. Các thuật toán ML có 
khả năng học và dự đoán từ các mẫu dữ liệu dựa trên 
đặc trưng. Tuy nhiên, theo Telenti et al. (2018), các 
mô hình ML thường hoạt động như "hộp đen", và 
thường không rõ sự hiệu quả do gặp nhiều thử thách 
khi phân tích các diễn biến bên trong để nhận biết 
mô hình kết luận do đâu. Các mô hình học sâu có 
thể đạt độ chính xác cao trên tập dữ liệu lớn nhưng 
gây khó hiểu và khó giải thích lý do tại sao một mẫu 
dữ liệu lại được phân vào một lớp hay các nhóm  
nào đó.  

Các phương pháp xAI không chỉ giúp giải thích 
cách thức các thuật toán phân tích và xử lý dữ liệu 
mà còn cung cấp thông tin về tầm quan trọng của 
từng đặc trưng trong việc tạo ra dự đoán hoặc kết 
quả. Từ đó, cách tiếp cận này có thể được tận dụng 
để lựa chọn đặc trưng. Trong bối cảnh nghiên cứu 
metagenomics, xAI có vai trò rất quan trọng. Bởi vì 
dữ liệu metagenomics có tính đa dạng và phức tạp 
cao, việc áp dụng các phương pháp xAI có thể giúp 
các nhà khoa học hiểu rõ hơn về mối quan hệ giữa 
các vi sinh vật và các biến đổi trong hệ sinh thái. 
Trong các nghiên cứu metagenomics về việc xác 
định phương pháp điều trị, xAI có thể xác định các 
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yếu tố hoặc nhóm gen tiềm năng có liên quan đến 
kháng thuốc, giúp cải thiện các phương pháp chẩn 
đoán và điều trị. Với việc hỗ trợ để giải thích tầm 
quan trọng đặc trưng, khi ứng dụng xAI ta có thể 
đánh giá mức độ ảnh hưởng của từng đặc trưng đến 
kết quả đầu ra, qua đó hỗ trợ loại bỏ các đặc trưng 
kém quan trọng và lựa chọn ưu tiên những đặc trưng 
có ảnh hưởng mạnh đến đầu ra kỳ vọng có thể đạt 
hiệu quả tốt cho bài toán phân lớp. Những giải thuật 
phổ biến hiện nay như LIME (Ribeiro et al., 2016), 
SHAP (Lundberg & Lee, 2017) đã được sử dụng 
rộng rãi. Riêng với lĩnh vực metagenomics, một số 
nghiên cứu đã thử áp dụng xAI vào lĩnh vực này. 
Sekaran et al. (2023) đã khám phá sự mất cân bằng 
trong hệ vi sinh vật của âm đạo liên quan đến nguyên 
nhân gây bệnh ung thư cổ tử cung, cho thấy sự thống 
trị của các vi khuẩn Firmicutes, Actinobacteria và 
Proteobacteria. Nghiên cứu đã cho thấy sự gia tăng 
đáng kể của Lactobacillus iners và Prevotella 
timonensis được xác định có ảnh hưởng đến sự tiến 
triển của bệnh. Nghiên cứu đã sử dụng SHAP để 
phân tích kết quả và phát hiện rằng sự gia tăng của 
Ralstonia có khả năng cao trong việc dự đoán ung 
thư cổ tử cung, xác nhận sự hiện diện của các vi sinh 
vật gây bệnh trong mẫu âm đạo của bệnh nhân. Một 
ứng dụng của mô hình xAI nhằm xác định các dấu 
ấn sinh học về gen liên quan đến COVID-19 thông 
qua dữ liệu mNGS trên 234 bệnh nhân được trình 
bày trong bài báo của Yagin et al. (2023).  

Thực hiện lựa chọn đặc trưng để chẩn đoán bệnh 
ung thư đại trực tràng, Jabeer et al. (2022) nhận xét 
rằng kỹ thuật Select K Best, Information Gain và 
XGBoost đóng góp đáng kể trong việc giảm số 
lượng vi sinh vật được sử dụng cho chẩn đoán ung 
thư đại trực tràng, qua đó giúp tiết kiệm chi phí và 
thời gian; Rừng ngẫu nhiên - Random Forest (RF) 
có hiệu suất phân loại ung thư đại trực tràng vượt 
trội hơn so với Adaboost, Máy Vector Hỗ trợ 
(SVM), Cây Quyết định, Logitboost và các mô hình 
tổng hợp. Gungor et al. (2025) đã đề xuất phương 
pháp lựa chọn đặc trưng có tên G-S-M (Grouping-
Scoring-Modeling) nhằm phát hiện các enzyme vi 
sinh vật liên quan đến ung thư đại trực tràng từ dữ 
liệu metagenomics. G-S-M tích hợp kiến thức sinh 
học bằng cách nhóm các enzyme theo phân loại EC 
(enzyme commission) trước khi đánh giá và chọn 
đặc trưng. Kết quả cho thấy, một số enzyme như 
glycosidase, CoA-transferase và hydro-lyase có liên 
quan đến bệnh ung thư đại trực tràng. Phương pháp 
được đề xuất vượt trội hơn so với các phương pháp 
chọn đặc trưng truyền thống khác trong các thí 
nghiệm so sánh. 

Merrick & Taly (2020) đã đề xuất phương pháp 
giải thích kết quả của các thuật toán trí tuệ nhân tạo 
dựa trên các phản chứng đa dạng: Diverse 
Counterfactuals Explanation (DCE). Không giống 
như các phương pháp truyền thống tập trung vào 
việc phân tích tầm quan trọng của từng đặc trưng, 
các phản chứng đa dạng được tạo ra trong nghiên 
cứu này, tức là các điểm dữ liệu giả lập gần với mẫu 
gốc nhưng có kết quả dự đoán khác biệt. Mục tiêu 
chính là giải thích các dự đoán của mô hình học máy 
được sử dụng để hỗ trợ ra quyết định trong các lĩnh 
vực quan trọng đối với xã hội như: tài chính, y tế, 
giáo dục và tư pháp hình sự. Tuy nhiên, việc ứng 
dụng DCE để phân tích lựa chọn đặc trưng cho dữ 
liệu y tế là một khoảng trống nghiên cứu rất có tiềm 
năng cần được thực hiện để đánh giá mức độ hiệu 
quả của DCE trên dữ liệu Metagenomic. Do đó, mục 
tiêu của nghiên cứu này là đề xuất cách tiếp cận lựa 
chọn đặc trưng với DCE và đánh giá độ hiệu quả của 
cách tiếp cận này trên bài toán chẩn đoán ung thư 
đại trực tràng trên dữ liệu vi sinh vật đường ruột. 
Bên cạnh, mục tiêu của nghiên cứu cũng đánh giá 
độ biến động của hiệu quả với các tập đặc trưng lần 
lượt tăng dần từ 1 đến 50 đặc trưng đã được xếp 
hạng độ quan trọng với giải thuật DCE. Kết quả cho 
thấy cách tiếp cận này có hiệu quả trong việc giảm 
được số lượng đặc trưng cần xem xét tuy nhiên vẫn 
đạt hiệu suất phân loại cao so với trên tập dữ liệu 
ban đầu chưa lựa chọn đặc trưng. 

2. PHƯƠNG PHÁP NGHIÊN CỨU 

Hình 1 minh họa các bước chính cho việc triển 
khai một giải thuật xAI như DCE cho việc trích chọn 
đặc trưng. Đầu tiên, dữ liệu được huấn luyện để có 
mô hình đã được huấn luyện và sử dụng DCE 
Explainer để có thể tạo các phản chứng nhằm đánh 
giá mức độ quan trọng của các đặc trưng trên việc 
quyết định của mô hình.  

Các đặc trưng được xếp hạng và lần lượt đưa vào 
các mô hình ML để đánh giá độ hiệu quả của các bộ 
đặc trưng tìm được. 

 
Hình 1. Các bước chính cho quá trình lựa chọn 

đặc trưng với DCE 
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2.1. Các mô hình máy học huấn luyện 

Việc lựa chọn các đặc trưng với các phương 
pháp xAI thông thường cần bắt đầu bằng việc huấn 
luyện các mô hình máy học để từ đó có thể cung cấp 
các mô hình đã được huấn luyện đưa vào các thuật 
toán giải thích để đánh giá mức độ đóng góp của các 
đặc trưng vào việc ra quyết định của mô hình. Mô 
hình đã được huấn luyện này kết hợp với kỹ thuật 
xAI có thể đánh giá mức độ đóng góp của mỗi đặc 
trưng vào quyết định của mô hình trên mỗi mẫu dữ 
liệu. Để thực hiện việc huấn luyện, các giải thuật 
máy học cổ điển nhưng có hiệu quả cao đã được 
chứng minh qua các nghiên cứu phân tích trên dữ 
liệu Metagenomic là RF và Gradient Boosting 
Classifier (GBC) được sử dụng. Cách giải thuật này 
được đánh giá rất cao về mặt hiệu suất qua độ chính 
xác cao và thời gian thực hiện nhanh trong các bài 
toán phân lớp trên dữ liệu Metagenomic. 

RF, GBC hoạt động bằng cách xây dựng nhiều 
cây quyết định và kết hợp chúng để đưa ra kết quả 
cuối cùng. Mỗi cây quyết định trong rừng được huấn 
luyện trên một tập con của dữ liệu và được dự đoán 
kết quả, sau đó kết quả của tất cả các cây được tổng 
hợp lại để đưa ra dự đoán cuối cùng. Các siêu tham 
số được sử dụng bao gồm n_estimators là 500 (số 
lượng cây tương ứng khuyến nghị trong Pasolli et al. 
(2016), Nguyen and TN (2020) và  Karwowska et 
al. (2025)).  

2.2. Lựa chọn đặc trưng với Diverse 
Counterfactuals explanation 

Wachter et al. (2017) và Merrick & Taly (2020) 
đề xuất giải quyết vấn đề đa dạng trong các phản 
thực (counterfactuals) bằng cách đề xuất một ràng 
buộc đa dạng giữa các phản thực được tạo ra  
ngẫu nhiên.  

Như mô tả trong nghiên cứu, Giải thích phản 
thực (counterfactual explanation) là một cách tiếp 
cận giải thích bằng việc đề xuất một kịch bản giả 
định ngược với thực tế, cho biết điều gì cần thay đổi 
để một mô hình máy học cho ra kết quả khác. Ngoại 
trừ trên các mô hình tuyến tính đơn giản được áp 
dụng, rất thử thách để tạo ra các giải thích phản thực 
đạt hiệu quả tốt cho mọi mô hình máy học. Chính vì 
thế, các giải thích phản thực cho các mô hình được 
đề xuất. Ý tưởng cốt lõi là thiết lập việc tìm kiếm 
các giải thích như một vấn đề tối ưu hóa, tương tự 
như việc tìm các ví dụ đối nghịch.  

Trong kết quả thể hiện ở Hình 1, sau quá trình 
huấn luyện để có mô hình đã huấn luyện trên bộ dữ 
liệu được tạo, đối tượng DCE Explainer được khởi 
tạo bởi nghiên cứu để bắt đầu quá trình giải thích 

các dự đoán của mô hình. Mẫu dữ liệu cụ thể cần 
giải thích sẽ được chọn, trong nghiên cứu này là 50 
mẫu ngẫu nhiên trong mỗi bộ dữ liệu được chọn và 
nhãn mục tiêu là 0 hoặc 1, thể hiện có hoặc không 
bị ung thư. Sau khi có mẫu dữ liệu, giải thuật DCE 
được sử dụng để tạo ra các phản chứng, đây là các 
mẫu dữ liệu giả định từ việc thay đổi một số đặc 
trưng sao cho mô hình đưa ra dự đoán khác với mẫu 
ban đầu. Ở đây, thực nghiệm được lựa chọn với số 
lượng phản chứng là 5 vì với số lượng này có thể thu 
thập đủ dữ liệu để phân tích, đồng thời tránh làm 
tăng độ phức tạp và tăng chi phí tính toán quá mức. 
Đây cũng là một số lượng hợp lý để đạt được kết quả 
phù hợp mà không làm quá tải quá trình tính toán. 
Việc tạo ra 5 phản chứng giúp phân tích, quan sát dễ 
dàng và so sánh sự thay đổi trong kết quả dự đoán 
của mô hình khi có sự thay đổi về đặc trưng. Sau khi 
tạo phản chứng, kết quả cho cả mẫu dữ liệu gốc và 
các phản chứng để kiểm tra sự thay đổi của mô hình 
khi có sự thay đổi về các đặc trưng được dự đoán. 
Kết quả dự đoán giữa mẫu gốc và phản chứng sẽ 
được so sánh để hiểu rõ sự thay đổi trong mô hình 
khi thay đổi đầu vào. Một cách chi tiết, quy trình lựa 
chọn đặc trưng với DCE được liệt kê như sau:  

• Lấy mẫu dữ liệu đầu vào: 50 mẫu ngẫu nhiên 
được chọn từ các tập dữ liệu, với số lượng mẫu này 
chỉ chiếm từ 50% trở xuống trên tổng số lượng mẫu 
đã có của mỗi bộ. Các mẫu ngẫu nhiên này được 
dùng để đánh giá độ quan trọng của đặc trưng. Khi 
DCE được áp dụng trên mỗi mẫu cho ra các độ đo 
quan trọng trên mỗi đặc trưng và để lựa chọn các đặc 
trưng thì 50 mẫu này được tính trung bình để sắp 
xếp lựa chọn. 

• Tạo phản chứng: DCE được sử dụng để tạo 
ra số lượng phản chứng cho từng mẫu đã chọn. DCE 
tạo ra các phản chứng là các bản sao của mẫu với 
các đặc trưng thay đổi nhằm xem liệu dự đoán của 
mô hình có thay đổi không. Công thức (công thức 
(1)) là hàm mục tiêu tối ưu hóa, được thiết kế để cân 
bằng giữa các yếu tố như: độ gần gũi (proximity), 
độ đa dạng (diversity) và tính khả thi (feasibility) 
của các phản chứng. Công thức này tối ưu hóa quá 
trình sinh phản chứng sao cho phản chứng vừa khác 
đầu ra ban đầu (thay đổi được dự đoán) vừa gần với 
mẫu gốc (giữ tính khả thi) đồng thời đảm bảo các 
phản chứng đa dạng (tránh trùng lặp), không những 
thế, nó còn có thể tạo ra các ví dụ có ý nghĩa và hợp 
lý để giải thích quyết định của mô hình:  
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𝐶𝐶(𝑥𝑥) = 𝑎𝑎𝑎𝑎𝑎𝑎 min
𝑐𝑐1,…,𝑐𝑐𝑘𝑘

�
1
𝑘𝑘
�𝑦𝑦_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑓𝑓(𝑐𝑐1),𝑦𝑦)

𝑘𝑘

𝑖𝑖=1

+ 𝜆𝜆1
1
𝑘𝑘
�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑐𝑐𝑖𝑖 , 𝑥𝑥)
𝑘𝑘

𝑖𝑖=1

− 𝜆𝜆2𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑐𝑐𝑖𝑖 , … , 𝑐𝑐𝑘𝑘)� 

(1) 

Trong đó: 𝑦𝑦_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑓𝑓(𝑐𝑐1),𝑦𝑦) là hàm mất mát giữa đầu 
ra của mô hình f(ci) và nhãn mục tiêu y; 𝜆𝜆1, 𝜆𝜆2 là các 
siêu tham số để cân bằng giữa 3 phần của hàm mất 
mát. dist(ci,x) là khoảng cách giữa mỗi phản chứng 
ci và ví dụ đầu vào gốc x, dùng để đảm bảo tính khả 
thi của phản chứng (tức là độ gần gũi). 
Diversity(c1,..., ck) là chỉ số đo lường sự đa dạng 
giữa các phản chứng trong tập hợp {c1, c2,..., ck}. 

• So sánh phản chứng với mẫu gốc: Từng phản 
chứng được so sánh với mẫu gốc bằng cách kiểm tra 
sự khác biệt ở từng đặc trưng. Nếu giá trị của một 
đặc trưng thay đổi trong phản chứng so với mẫu ban 
đầu thì có thể coi đó là một đặc trưng quan trọng 
nhất, ảnh hưởng nhiều nhất trong việc dự đoán kết 
quả.  

• Tính toán tần suất thay đổi: Số lần mỗi đặc 
trưng thay đổi trong tất cả các phản chứng được 
đếm. Với mỗi đặc trưng, nếu giá trị của nó khác với 
mẫu ban đầu trong một phản chứng thì được tính là 
1 lần thay đổi. Kết quả được thể hiện ở Hình 2 minh 
họa các đặc trưng có tần suất ảnh hưởng nhiều nhất. 

• Tính toán chỉ số DCE (DCE Value): Tỷ lệ số 
lần đặc trưng đó thay đổi trong các phản chứng so 
với mẫu gốc là độ đo dùng để xếp hạng các đặc 
trưng. Khi tổng số lần thay đổi chia cho tổng số phản 
chứng, giá trị của đặc trưng cao nhất được xếp hạng 
là quan trọng nhất. Trong đó công thức của DCE 
Value dựa trên công thức tính Sparsity trong bài báo 
gốc và được tính như sau (Công thức 2): 

𝐷𝐷𝐷𝐷𝐷𝐷_𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓1) = 1
𝑘𝑘
∑ 1[𝑐𝑐𝑖𝑖

𝑙𝑙≠𝑥𝑥𝑙𝑙]
𝑘𝑘
𝑖𝑖=0    (2) 

Trong đó: 

k: số lượng phản chứng, 

d: số đặc trưng, 

1[𝑐𝑐𝑖𝑖
𝑙𝑙≠𝑥𝑥𝑙𝑙]: đặc trưng thứ Ɩ trong phản chứng i khác 

với mẫu gốc. 

• Chọn đặc trưng quan trọng nhất: Các đặc 
trưng được sắp xếp theo số lần thay đổi và đặc trưng 
có số lần thay đổi cao nhất được chọn. 

 
Hình 2. Một minh họa về các đặc trưng có tần 
suất xuất hiện nhiều nhất trong 50 mẫu phân 

tích với DCE  trên một bộ dữ liệu được khảo sát 

Số lượng phản chứng càng lớn giúp hiểu rõ hơn 
về cách thức các đặc trưng có thể thay đổi để dẫn 
đến một kết quả khác. Sự ổn định của các đặc trưng 
được kiểm tra qua nhiều phản chứng cũng là một 
bước quan trọng. Nếu một đặc trưng thường xuyên 
thay đổi trong các phản chứng, đó là dấu hiệu cho 
thấy đặc trưng đó có tầm quan trọng cao. Cuối cùng, 
khi có nhiều phản chứng, khoảng cách trung bình 
giữa mẫu gốc và các phản chứng được tính toán sẽ 
giúp xác định các đặc trưng ảnh hưởng nhiều nhất, 
từ đó tăng độ chính xác cho các đặc trưng quan 
trọng. Trong dữ liệu thành phần vi khuẩn trong cơ 
thể bệnh nhân, mẫu được lựa chọn ngẫu nhiên 50 
bệnh nhân, có thể tìm ra được trong 50 bệnh nhân 
đó các đặc trưng ảnh hưởng nhất đến kết quả. DCE 
tạo ra các phản chứng bằng cách tự thay đổi các đặc 
trưng để kết quả dự đoán có thể thay đổi. Khi mẫu 
ban đầu và phản chứng được so sánh, độ quan trọng 
của các vi khuẩn có thể được tính. Hình 2 thể hiện 
vi khuẩn có nhãn là Otu0915 có giá trị cao nhất, 
Otu0915 là loài Parvimonas micra, cũng được chỉ ra 
trong Dai et al. (2018) được xem như một trong chỉ 
dấu sinh học quan trọng dùng trong chẩn đoán bệnh 
ung thư đại trực tràng. 

Sau khi có được bảng xếp hạng của các đặc 
trưng, giải thuật RF và GBC lần lượt được chạy để 
học và đánh giá trên các tập đặc trưng đã được xếp 
hạng lần lượt từ 1 đến 50 đặc trưng, với các siêu 
tham số của giải thuật RF và GBC được thiết lập như 
ở nghiên cứu (Nguyen and TN, 2020) để so sánh độ 
hiệu quả. Với mỗi tập đặc trưng quan trọng được 
chạy với 10-fold-cross-validation và tính giá trị 
trung bình kèm độ lệch chuẩn. 
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3. KẾT QUẢ VÀ THẢO LUẬN 
3.1. Dữ liệu thực nghiệm   

Bốn bộ dữ liệu thu thập từ Dai et al. (2018) được 
sử dụng trong quá trình đánh giá phương pháp đề 
xuất được trình bày trong Bảng 1. Mỗi bộ có hơn 
1900 đặc trưng được thu thập từ các nhóm người Áo, 
Mỹ, Trung Quốc, Đức và Pháp. Mỗi mẫu bao gồm 
tỷ lệ các loài vi sinh sống trong môi trường ruột 
người. Bộ dữ liệu được đặt tên là Ung thư (UT)1, 
UT2, UT3, UT4 lần lượt có 109, 100, 165, và 152 
mẫu với số lượng đặc trưng thấp nhất là 1932 và cao 
nhất là 1981. 

Bảng 1. Bốn bộ dữ liệu thực nghiệm 

Tên bộ #mẫu #đặc 
trưng #bệnh #không 

bệnh 
UT1 109 1981 46 63 
UT2 100 1976 48 52 
UT3 165 1932 92 73 
UT4 152 1980 88 64 
3.2. Môi trường thực nghiệm và độ đo đánh 

giá 

Để triển khai thực nghiệm, các thư viện phổ biến 
như scikit-learn, numpy, pandas, math, keras, 
deepmg, matplotlib, và một số thư viện khác được 
sử dụng trong nghiên cứu để triển khai các bước xử 
lý và phân tích. Các mô hình học máy như RF và 
GBC cũng được áp dụng để xây dựng và huấn luyện 

các mô hình dự đoán. Ngoài ra, thư viện dice-ml 
(Mothilal et al., 2020) cũng được sử dụng để đánh 
giá lựa chọn đặc trưng từ các tập dữ liệu. 

Độ hiệu quả được đánh giá với diện tích dưới 
đường cong (Area Under the Curve (AUC)) trung 
bình trên 10-fold-cross-validation. Kết quả được 
chạy với giải thuật RF và GBC với 500 cây (các siêu 
tham số còn lại để mặc định) để so sánh với Nguyen 
and TN (2020). Độ đo AUC là một độ đo đánh giá 
hiệu suất mô hình đáng tin cậy ngay cả trên các tập 
dữ liệu mất cân bằng và thường được sử dụng phổ 
biến trong các bài toán phân lớp trên dữ liệu y khoa. 

3.3. Kết quả trên 50 đặc trưng quan trọng 
được lựa chọn bởi DCE 

Kết quả với giải thuật RF được minh họa như 
Hình 3, thông qua quá trình thực nghiệm trên 10-
fold-cross-validation với số lượng đặc trưng từ 1 đến 
50, kết quả trên 4 tập dataset được hiển thị trên hình. 
Kết quả trên tập UT3 cho thấy, giá trị AUC tăng 
mạnh từ đặc trưng 1 đến khoảng đặc trưng thứ 3, sau 
đó có xu hướng ổn định, giá trị AUC cao nhất ở số 
lượng đặc trưng 45. Tiếp theo là tập UT1 có giá trị 
AUC giảm đột ngột ở đặc trưng thứ 2 nhưng sau đó 
tăng chậm ở các đặc trưng tiếp theo, đến khoảng 40 
đặc trưng thì mới có xu hướng tăng nhanh, với kết 
quả AUC cao nhất được thực nghiệm là ở số lượng 
đặc trưng cao nhất được khảo sát. 

    
a) UT1                                                                   b) UT2 

     
c) UT3                                                                  d) UT4 

Hình 3. Kết quả phân lớp với độ đo AUC từ 1 đến 50 đặc trưng quan trọng với RF trên 4 bộ dữ liệu 
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a) UT1                                                                    b) UT2 

        
c) UT3                                                                    d) UT4 

Hình 4. Kết quả phân lớp với độ đo AUC từ 1 đến 50 đặc trưng quan trọng với GBC trên 4 bộ dữ liệu 

Kế tiếp là tập UT4, biểu đồ có xu hướng tăng 
giảm lúc đầu nhưng khoảng từ 30 đặc trưng đã thấy 
mức AUC cao và tăng liên tục, có kết quả thu được 
cao nhất với giá trị AUC là khoảng 49 đặc trưng. 
Tiếp tục là tập UT2 AUC có xu hướng tăng đến 
khoảng từ 10 đặc trưng sau đó có dấu hiệu ổn định, 
kết quả thực nghiệm có giá trị AUC cao nhất sau quá 
trình thử nghiệm là ở 35 đặc trưng. Trong hầu hết 
các bộ dữ liệu, giá trị AUC có xu hướng tăng nhẹ ở 
phần đầu nhưng sau đó đạt trạng thái ổn định và 
không cải thiện đáng kể khi thêm nhiều đặc trưng 
hơn; đặc trưng đầu tiên có ảnh hưởng lớn đến độ 
hiệu quả trong việc phân lớp, trong khi các đặc trưng 
bổ sung về sau có mức đóng góp giảm dần. 

Hình 4 thể hiện kết quả với GBC. Kết quả trên 
tập UT1 cho thấy AUC không ổn định ở những số 
đặc trưng đầu cho đến khoảng 7 đặc trưng và dần ổn 
định với sự chênh lệch nhẹ khi số đặc trưng được 
chọn từ 11 đến 36, kết quả đạt đỉnh ở số đặc trưng 
37, trong khi trên tập UT2 sau 7 đặc trưng theo độ 
đo AUC cho thấy có chiều hướng giảm. Tập UT3 
cho thấy là AUC có xu hướng tăng dần theo số 
lượng đặc trưng được chọn và đạt gần đỉnh ở những 
số đặc trưng lớn. Kết quả trên UT3 cho thấy khoảng 
25 đặc trưng thì độ đo AUC đi vào ổn định. Tương 
tự với UT3, kết quả trên UT4 cũng cho thấy sau 25 
đặc trưng thì kết quả cũng dần đi vào ổn định. 

Kết quả cho thấy, phần lớn kết quả trên GBC tốt 
hơn. So sánh chung thì GBC cho kết quả cao với ít 
đặc trưng hơn so với RF. Ngoài trừ trên tập UT1, 
các tập khác GBC cho kết quả tốt hơn. 

 
Hình 5. So sánh kết quả (độ đo AUC) với 50 đặc 

trưng với được chọn trên 4 bộ dữ liệu với RF  
và GBC 

Hình 5 thể hiện sự so sánh của RF và GBC trên 
50 đặc trưng được chọn. Kết qua thấy GBC vượt trội 
với kết quả đạt tốt hơn trên 3 bộ UT2, UT3, UT4, 
trong khi RF chỉ tốt hơn trên UT1 với độ chênh lệch 
là gần 0,2. Độ chênh lệch lớn nhất là trên bộ UT3 
với độ lệch là hơn 0,3, trong khi trên UT4 là hơn 
0,05 và UT2 là hơn 0,08.  

3.4. Thảo luận kết quả 

Dựa trên kết quả đạt được ở Bảng 2 cho thấy hầu 
hết kết quả với GBC cho kết quả cao với số đặc 
trưng cần hầu hết là ít hơn. So với  kết quả chạy trên 
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bộ ban đầu với hơn 1900 đặc trưng từ nghiên cứu 
của Nguyen and TN (2020) với số lượng đặc trưng 
chỉ dưới 3%  so với các bộ ban đầu. Tuy nhiên kết 
quả thể hiện cho thấy, các đặc trưng được lựa chọn 
có độ quan trọng ảnh hưởng đến hiệu suất phân lớp. 
Đáng chú ý là chỉ với 7 đặc trưng nhưng có thể đạt 
được chính xác rất cao trên bộ UT3 khi so sánh với 
tập ban đầu, tuy nhiên điều này cũng phù hợp với 
nghiên cứu của Dai et al. (2018), nơi các tác giả cũng 
đề xuất sử dụng 7 đặc trưng. Ngoài trừ trên tập UT1, 
các kết quả tốt nhất đạt được với GBC chênh lệch 
có thể lên đến hơn 28% với bộ UT3 và chênh lệch 
thấp nhất trên UT4 với khoảng 5%. 

Kết quả cũng cho thấy RF không ổn định bằng 
GBC được thể hiện qua độ lệch chuẩn cao khi so 
sánh với GBC trên tất cả các tập dữ liệu. Sự khác 
biệt về độ lệch chuẩn khoảng 1-5%. 

Bảng 2. So sánh kết quả với giá trị trung bình và 
độ lệch chuẩn với độ đo AUC (%). Số mở 
ngoặc là số đặc trưng để đạt được  
kết quả 

 UT1 UT2 UT3 UT4 

RF 
77,59 

±16,40 
(#50) 

68,60 
±18,77 
(#35) 

52,50 
±12,24 
(#45) 

74,04 
±19,93 
(#49) 

GBC 
66,25 

±14,52 
(#40) 

80,55 
±16,61 

(#7) 

80,93 
±10,76 
(#50) 

79,23 
±15,41 
(#47) 

GBC 
(Nguyen 
and TN, 
2020) 

76,83 
(#1981) 

66,69 
(#1976) 

70,38 
(#1932) 

78,64 
(#1980) 

4. KẾT LUẬN 

DCE được đề xuất sử dụng trong nghiên cứu cho 
quá trình lựa chọn đặc trưng trên dữ liệu vi sinh vật 
đường ruột nhằm hỗ trợ chẩn đoán bệnh ung thư đại 
trực tràng. Trong nghiên cứu, 4 bộ dữ liệu 
Metagenomic với số lượng đặc trưng ban đầu là hơn 
1900 được đưa ra phân tích trong thực nghiệm. Với 
kết quả đã được phân tích và so sánh cho thấy rằng 
chỉ với dưới 3% số lượng đặc trưng ban đầu, các giải 
thuật phân lớp cổ điển RF và GBC đã đạt hiệu suất 
cao hơn trên các bộ ban đầu. Điều này thể hiện rằng 
việc lựa chọn đã trích chọn ra được những đặc trưng 
có ý nghĩa, có thể cải thiện hiệu quả mô hình phân 
lớp để hỗ trợ chẩn đoán bệnh ung thư đại trực tràng 
trên dữ liệu hệ vi sinh đường ruột. Với kết quả thể 
hiện cũng cho thấy rằng GBC hiệu quả về độ chính 
xác phân lớp với độ đo AUC hơn RF trong đa phần 
các trường hợp với số lượng đặc trưng đa phần trong 
các trường hợp so sánh cũng ít hơn. 

Mặc dù vậy, hiệu suất cao nhất đạt được không 
đồng đều và nhất quán ở số lượng đặc trưng được 
chọn, điều này đòi hỏi có những phương pháp cải 
tiến hiệu quả hơn cần được thực hiện trong tương 
lai. Hiện, nghiên cứu mới chỉ đánh giá tiềm năng của 
DCE trong việc lựa chọn đặc trưng, các nghiên cứu 
tương lai có thể phân tích sâu và khai phá thêm về 
tiềm năng của giải thuật này và so sánh thêm với các 
nghiên cứu về các phương pháp lựa chọn đặc trưng 
khác. Thêm nữa, các mô hình học sâu có thể được 
thêm vào so sánh ở các nghiên cứu sắp tới để thấy 
rõ ưu điểm và nhược điểm của mỗi loại giải thuật. 
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