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TÓM TẮT 
Bài báo được thực hiện nhằm nghiên cứu việc khôi phục và xấp xỉ 
hàm số trong không gian Besov có độ trơn hỗn hợp. Các phương 
pháp tuyến tính từ giá trị lấy mẫu được xây dựng để khôi phục hàm 
số thuộc không gian Besov và đánh giá tiệm cận tốc độ hội tụ của 
phương pháp. Kết quả chính của bài báo là mở rộng và tổng quát 
các kết quả đã có.  

Từ khóa: Không gian Besov, khôi phục tuyến tính, khôi phục phi 
tuyến thích nghi 

ABSTRACT 
This paper studies recovery and approximation of functions in the 
Besov spaces with mixed smoothnesss. We construct linear 
sampling recovery methods of functions in the Besov spaces, and 
evaluate the asymptotic behavior of the method. The main result of 
the paper is to extend and generalize the previous results.  

Keywords: Besov-type spaces, linear sampling recovery, nonlinear 
adaptive sampling recovery 

1. GIỚI THIỆU  

Bài toán khôi phục tín hiệu  là một bài toán hết 
sức quan trọng có ứng dụng trong nhiều lĩnh vực của 
cuộc sống , vì trong thực tế không có một loại máy 
nào có thể cho ta thông tin chính xác của tín hiệu. 
Khi đó tín hiệu được mô hình hóa như một hàm số  
(Chui, 1992).  

Bài toán nền tảng về khôi phục hàm số từ hữu 
hạn giá trị lấy mẫu đã được nghiên cứu: khôi phục 
gần đúng hàm số 𝑓𝑓 từ 𝑛𝑛 giá trị lấy mẫu. Trên cơ sở 
thông tin này chúng ta xây dựng một phương pháp 
để khôi phục. Trong cách tiếp cận truyền thống thì 
giá trị lấy mẫu và phương pháp khôi phục là không 
thích nghi với hàm số, nghĩa là các điểm lấy mẫu và 
phương pháp khôi phục được chọn giống nhau cho 
mọi hàm số (Temlyakov, 1985; Dinh, 2011a). Trong 
bài báo này, một trong những phương pháp khôi 

phục không thích nghi đó là phương pháp tuyến tính 
cho lớp hàm số thuộc không gian Besov đã được 
nghiên cứu. Lý thuyết sóng nhỏ được hình thành và 
phát triển trong những năm 90 của thế kỷ trước, là 
một trong những công cụ biểu diễn hiệu quả trong 
bài toán khôi phục và xấp xỉ hàm số từ giá trị lấy 
mẫu, vì vậy để nghiên cứu bài toán khôi phục hàm 
số ta sử dụng các biểu diễn sóng nhỏ giả nội suy bởi 
các B-spline (Chui, 1992; DeVore & Lorentz, 
1993). Như đã nói trên thì phương pháp tuyến tính 
là phương pháp truyền thống và mặc dù có nhiều 
cách tiếp cận cho bài toán khôi phục hàm số nhưng 
phương pháp tuyến tính vẫn luôn được quan tâm 
nghiên cứu bởi ưu điểm của nó, có thể kể đến các 
công trình nổi bật của Temlyakov (1985,1993), 
Dinh (2011a, 2016). Nguyen và Mai (2018) cũng đã 
nghiên cứu bài toán khôi phục xấp xỉ hàm số trong 
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không gian Besov 𝐵𝐵𝑝𝑝,𝜃𝜃
Ω  với độ trơn đẳng hướng bằng 

phương pháp tuyến tính.  

Các ký hiệu sau đây được sử dụng trong bài báo:  
𝐴𝐴𝑛𝑛(𝑓𝑓) ≪ 𝐵𝐵𝑛𝑛(𝑓𝑓) nếu 𝐴𝐴𝑛𝑛(𝑓𝑓) ≤ 𝐶𝐶.𝐵𝐵𝑛𝑛(𝑓𝑓), 𝐶𝐶 là một 
hằng số độc lập với 𝑛𝑛 và 𝑓𝑓;  𝐴𝐴𝑛𝑛(𝑓𝑓) ≍ 𝐵𝐵𝑛𝑛(𝑓𝑓) nếu 
𝐴𝐴𝑛𝑛(𝑓𝑓) ≪ 𝐵𝐵𝑛𝑛(𝑓𝑓) và 𝐵𝐵𝑛𝑛(𝑓𝑓) ≪ 𝐴𝐴𝑛𝑛(𝑓𝑓); Cho 𝑥𝑥 ∈ ℝ, 
𝑘𝑘 ∈ ℤ+𝑑𝑑 :  𝑥𝑥+ = max(0, 𝑥𝑥) , 2𝑘𝑘 =
(2𝑘𝑘1 , … , 2𝑘𝑘𝑑𝑑) ,      |𝑘𝑘|1 = ∑ 𝑘𝑘𝑖𝑖𝑑𝑑

𝑖𝑖=1 , 𝑘𝑘 ≥ 𝑘𝑘′ nếu  𝑘𝑘𝑗𝑗 ≥
𝑘𝑘𝑗𝑗′,   ∀ 𝑗𝑗 = 1, . . ,𝑑𝑑; 𝟏𝟏 = (1, 1, … ,1) ∈ ℝ𝑑𝑑; 𝕀𝕀 = [0,1].         

Ta nhắc lại định nghĩa không gian Besov 
𝐵𝐵𝑝𝑝,𝜃𝜃
𝑎𝑎  (Nguyen, 2019; Dinh, 2001).    

Định nghĩa 1. Cho 𝑓𝑓 là một hàm số thuộc không 
gian 𝐿𝐿𝑞𝑞(𝕀𝕀𝑑𝑑), 𝑒𝑒 là tập con bất kỳ của [𝑑𝑑]: = 
{1,2, … ,𝑑𝑑}, toán tử sai phân bậc (𝑙𝑙, 𝑒𝑒) của hàm số 

nhiều biến xác định trên 𝕀𝕀𝑑𝑑 ký hiệu là 𝛥𝛥ℎ
𝑙𝑙,𝑒𝑒 và được 

xác định bởi: 

𝛥𝛥ℎ
𝑙𝑙,𝑒𝑒: = � 

𝑖𝑖∈𝑒𝑒

𝛥𝛥ℎ𝑖𝑖′
𝑙𝑙   𝛥𝛥ℎ

𝑙𝑙,∅ = 𝐼𝐼 

Ở đây toán tử 𝛥𝛥ℎ𝑖𝑖
𝑙𝑙  là toán tử sai phân tương ứng 

với hàm số khi xem 𝑓𝑓 là hàm số một biến của biến 
𝑥𝑥𝑖𝑖 với các biến còn lại cố định. Đặt 

𝜔𝜔𝑙𝑙
𝑒𝑒(𝑓𝑓, 𝑡𝑡)𝑝𝑝: = sup

|ℎ𝑖𝑖|<𝑡𝑡𝑖𝑖,𝑖𝑖∈𝑒𝑒
 �𝛥𝛥ℎ

𝑙𝑙,𝑒𝑒𝑓𝑓�
𝑝𝑝′

, 𝑡𝑡 ∈ 𝕀𝕀𝑑𝑑 

là môđun trơn hỗn hợp bậc (𝑙𝑙, 𝑒𝑒) của 𝑓𝑓. Đặc 
biệt, 𝜔𝜔𝑙𝑙

∅(𝑓𝑓, 𝑡𝑡)𝑝𝑝 = ‖𝑓𝑓‖𝑝𝑝. 

Cho 0 < 𝑝𝑝,𝜃𝜃 ≤ ∞, 𝑎𝑎 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑑𝑑) ∈ ℝ+
𝑑𝑑 . 

Chúng ta xây dựng nửa chuẩn |𝑓𝑓|𝐵𝐵𝑝𝑝,𝜃𝜃
𝑎𝑎,𝑒𝑒  của hàm số 

𝑓𝑓 ∈ 𝐿𝐿𝑝𝑝(𝕀𝕀𝑑𝑑) như sau: 

|𝑓𝑓|𝐵𝐵𝑝𝑝,𝜃𝜃
𝑎𝑎,𝑒𝑒: =

⎩
⎪⎪
⎨

⎪⎪
⎧
��  

𝕀𝕀𝑑𝑑
 ��  
𝑖𝑖∈𝑒𝑒

 𝑡𝑡𝑖𝑖
−𝑎𝑎𝑖𝑖𝜔𝜔𝑙𝑙

𝑒𝑒(𝑓𝑓, 𝑡𝑡)𝑝𝑝�
𝜃𝜃

�  
𝑖𝑖∈𝑒𝑒

 𝑡𝑡𝑖𝑖−1𝑑𝑑𝑑𝑑�

1/𝜃𝜃

, 𝜃𝜃 < ∞

sup
𝑡𝑡∈𝕀𝕀𝑑𝑑

 ��  
𝑖𝑖∈𝑒𝑒

 𝑡𝑡𝑖𝑖
−𝑎𝑎𝑖𝑖𝜔𝜔𝑙𝑙

𝑒𝑒(𝑓𝑓, 𝑡𝑡)𝑝𝑝� , 𝜃𝜃 = ∞

 

Trường hợp đặc biệt, |𝑓𝑓|𝐵𝐵𝑝𝑝,𝜃𝜃
𝑎𝑎,∅ = ‖𝑓𝑓‖𝑝𝑝, ở đây 𝑙𝑙 là 

một số tự nhiên thỏa mãn 𝑙𝑙 > 𝑚𝑚𝑚𝑚𝑚𝑚
1≤𝑖𝑖≤𝑑𝑑

 𝑎𝑎𝑖𝑖 . Định nghĩa 
nửa chuẩn này không phụ thuộc vào 𝑙𝑙, nói cách khác 
các giá trị khác nhau của 𝑙𝑙 xác định các nửa chuẩn 
tương đương. Không gian 𝐵𝐵𝑝𝑝,𝜃𝜃

𝑎𝑎  là tập hợp tất cả các 
hàm số 𝑓𝑓 ∈ 𝐿𝐿𝑝𝑝(𝕀𝕀𝑑𝑑) sao cho chuẩn Besov sau đây là 
hữu hạn: 

‖𝑓𝑓‖𝐵𝐵𝑝𝑝,𝜃𝜃
𝑎𝑎 : = �  

𝑒𝑒⊂[𝑑𝑑]

|𝑓𝑓|𝐵𝐵𝑝𝑝,𝜃𝜃
𝑎𝑎,𝑒𝑒 . 

Ký hiệu 𝑈𝑈𝑝𝑝,𝜃𝜃
𝑎𝑎 = {𝑓𝑓 ∈ 𝐵𝐵𝑝𝑝,𝜃𝜃

𝑎𝑎 :  ‖𝑓𝑓‖𝐵𝐵𝑝𝑝,𝜃𝜃
𝑎𝑎 ≤ 1} là hình 

cầu đơn vị của không gian  𝐵𝐵𝑝𝑝,𝜃𝜃
𝑎𝑎 . 

Ví dụ: Cho 𝑙𝑙 = 2, 0 < 𝛼𝛼 < 2, 𝑑𝑑 = 1. Không 
gian Besov 𝐵𝐵𝑝𝑝,𝜃𝜃

𝛼𝛼  các hàm số 𝑓𝑓 ∈ 𝐿𝐿𝑝𝑝(𝕀𝕀) được xét. Khi 
đó các hàm số khả vi liên tục đến cấp 2 trên 𝕀𝕀 thuộc 
không gian Besov 𝐵𝐵𝑝𝑝,𝜃𝜃

𝛼𝛼  và không gian các hàm số 
liên tục đến cấp 2 trên 𝕀𝕀 có thể xem là một không 
gian Besov.  

Nếu 𝑙𝑙 > 2, 0 < 𝛼𝛼 < 𝑙𝑙,𝑑𝑑 = 1 thì không gian các 
hàm số có đạo hàm đến cấp 𝑙𝑙 trên 𝕀𝕀 và đạo hàm cấp 
𝑙𝑙 bị chặn trên 𝕀𝕀 là không gian con của không gian 
Besov 𝐵𝐵𝑝𝑝,𝜃𝜃

𝛼𝛼 . 

Bài báo được thực hiện nhằm nghiên cứu việc 
khôi phục và xấp xỉ cho lớp hàm số xác định trên 

𝕀𝕀𝑑𝑑: = [0,1]𝑑𝑑 trong không gian Besov với độ trơn 
hỗn hợp 𝐵𝐵𝑝𝑝,𝜃𝜃′

𝑎𝑎  𝑎𝑎 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑑𝑑) ∈ ℝ+
𝑑𝑑  bằng 

phương pháp tuyến tính. Dinh (2016) đã nghiên cứu 
khôi phục và xấp xỉ hàm số trong không gian Besov 
𝐵𝐵𝑝𝑝,𝜃𝜃
𝑎𝑎  khi 𝑎𝑎1 < 𝑎𝑎2 ≤ ⋯ ≤ 𝑎𝑎𝑑𝑑, phương pháp tuyến 

tính đã được xây dựng và đánh giá tiệm cận tốc độ 
hội tụ của phương pháp: 

𝑟𝑟𝑛𝑛 �𝑈𝑈𝑝𝑝,𝜃𝜃
𝑎𝑎 , 𝐿𝐿𝑞𝑞(𝕀𝕀𝑑𝑑)� ≍ 𝑛𝑛−𝑎𝑎1+(1/𝑝𝑝−1/𝑞𝑞)+ . 

Dinh (2011a) nghiên cứu cho trường hợp 𝛼𝛼 =
𝑎𝑎1 = 𝑎𝑎2 = ⋯ = 𝑎𝑎𝑑𝑑, xây dựng phương pháp tuyến 
tính để khôi phục và xấp xỉ hàm số xác định trên 𝕀𝕀𝑑𝑑 
thuộc hình cầu đơn vị 𝑈𝑈𝑝𝑝.𝜃𝜃

𝛼𝛼𝟏𝟏  trong không gian Besov 
𝐵𝐵𝑝𝑝.𝜃𝜃
𝛼𝛼𝟏𝟏 , với 0 < 𝑝𝑝, 𝜃𝜃, 𝑞𝑞 ≤ ∞ và 𝛼𝛼 > 1/𝑝𝑝. Hơn nữa ta 

có 

𝑟𝑟𝑛𝑛 �𝑈𝑈𝑝𝑝,𝜃𝜃′
𝛼𝛼𝟏𝟏  𝐿𝐿𝑞𝑞(𝕀𝕀𝑑𝑑)� ≍ 𝑛𝑛−𝛼𝛼+(1/𝑝𝑝−1/𝑞𝑞)+log2

(𝑑𝑑−1)𝑏𝑏𝑛𝑛, 

với  𝑏𝑏 = 𝑏𝑏(𝑝𝑝, 𝑞𝑞,𝛼𝛼, 𝜃𝜃) > 0.   

Trong bài báo này ta mở rộng, tổng quát các kết 
quả đã có ở (Dinh, 2011a; Dinh, 2016) cho trường 
hợp 𝑝𝑝 ≥ 𝑞𝑞. Chúng ta xây dựng các phương pháp 
tuyến tính để khôi phục và xấp xỉ hàm số trong 
không gian Besov 𝐵𝐵𝑝𝑝,𝜃𝜃

𝑎𝑎  với 0 < 𝛼𝛼 = 𝑎𝑎1 = 𝑎𝑎2 =
⋯ = 𝑎𝑎𝑠𝑠 = 𝑎𝑎𝑠𝑠+1 < 𝑎𝑎𝑠𝑠+2 ≤ ⋯ ≤ 𝑎𝑎𝑑𝑑 , 0 ≤ 𝑠𝑠 ≤ 𝑑𝑑 − 1. 
Đánh giá tiệm cận tốc độ hội tụ của phương pháp 
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𝑟𝑟𝑛𝑛 �𝑈𝑈𝑝𝑝,𝜃𝜃
𝑎𝑎 , 𝐿𝐿𝑞𝑞(𝕀𝕀𝑑𝑑)� ≍ 𝑛𝑛−𝛼𝛼+(1/𝑝𝑝−1/𝑞𝑞)+log2𝑠𝑠  𝑛𝑛. 

Từ đó có thể nhận thấy rằng các kết quả của Dinh 
(2011a) và Dinh (2016) trong trường hợp 𝑝𝑝 ≥ 𝑞𝑞 lần 
lượt ứng với 𝑠𝑠 = 𝑑𝑑 − 1, 𝑠𝑠 = 0.  

2. BIỂU DIỄN B-SPLINE GIẢ NỘI SUY 
QUA GIÁ TRỊ LẤY MẪU 

Định nghĩa 2. Ký hiệu 𝑁𝑁𝑟𝑟 là 𝐵𝐵-spline chuẩn tắc 
bậc 𝑟𝑟 với các nút tại các điểm 0,1, … , 𝑟𝑟 được xác 
định như sau: 𝑁𝑁1 là hàm đặc trưng trên nửa khoảng 
[0,1); với 𝑟𝑟 ≥ 2, 𝑁𝑁𝑟𝑟 được định nghĩa bởi tích chập 

𝑁𝑁𝑟𝑟(𝑥𝑥): = �  
∞

−∞
𝑁𝑁𝑟𝑟−1(𝑥𝑥 − 𝑦𝑦)𝑁𝑁1(𝑦𝑦)𝑑𝑑𝑑𝑑 

Đặt 𝑀𝑀𝑟𝑟(𝑥𝑥): = 𝑁𝑁𝑟𝑟(𝑥𝑥 + 𝑟𝑟/2) được gọi là 𝐵𝐵-spline 
trung tâm bậc 𝑟𝑟. 

Định nghĩa 2 có thể xem trong các tài liệu (Chui, 
1992; DeVore & Lorentz, 1993). 

Ta định nghĩa B - spline sóng nhỏ 
𝑀𝑀𝑘𝑘,𝑠𝑠(𝑥𝑥): = 𝑀𝑀(2𝑘𝑘𝑥𝑥 − 𝑠𝑠) 

cho một số không âm 𝑘𝑘 và 𝑠𝑠 ∈ ℤ. Ký hiệu 𝐌𝐌 là 
tập hợp tất cả 𝑀𝑀𝑘𝑘,𝑠𝑠 không triệt tiêu trên 𝕀𝕀. Cho 𝜆𝜆 =
{𝜆𝜆(𝑗𝑗)}𝑗𝑗∈𝑃𝑃(𝜇𝜇) là dãy chẵn hữu hạn, tức là 𝜆𝜆(𝑗𝑗) =
𝜆𝜆(−𝑗𝑗), ở đây 𝑃𝑃(𝜇𝜇): = {𝑗𝑗 ∈ ℤ: |𝑗𝑗| ≤ 𝜇𝜇} và 𝜇𝜇 ≥ 𝑟𝑟 −
1. Chúng ta định nghĩa toán tử tuyến tính 𝑄𝑄 tác động 
lên hàm 𝑓𝑓 xác định trên ℝ bởi 

𝑄𝑄(𝑓𝑓, 𝑥𝑥): = � 
𝑠𝑠∈ℤ

 Λ(𝑓𝑓, 𝑠𝑠)𝑀𝑀(𝑥𝑥 − 𝑠𝑠), (1) 

ở đây 

Λ(𝑓𝑓, 𝑠𝑠): = �  
𝑗𝑗∈𝑃𝑃(𝜇𝜇)

 𝜆𝜆(𝑗𝑗)𝑓𝑓(𝑠𝑠 − 𝑗𝑗). (2) 

Khi đó, từ định nghĩa của 𝐵𝐵-spline suy ra toán tử 
𝑄𝑄 bị chặn trên 𝐶𝐶(ℝ) và 

�𝑄𝑄(𝑓𝑓)‖𝐶𝐶(ℝ) ≤ ‖Λ‖� 𝑓𝑓‖𝐶𝐶(ℝ), 

trong đó ‖Λ‖ = ∑  𝑗𝑗∈𝑃𝑃(𝜇𝜇) |𝜆𝜆(𝑗𝑗)|. 

Ký hiệu 𝒫𝒫2𝑟𝑟−1 là tập hợp các đa thức đại số có 
bậc không vượt quá 2𝑟𝑟 − 1. Toán tử 𝑄𝑄 được xác 
định từ (1 − 2) được gọi là toán tử giả nội suy trong 
𝐶𝐶(ℝ) nếu toán tử này tái tạo lại 𝒫𝒫2𝑟𝑟−1, tức là 

𝑄𝑄(𝑝𝑝) = 𝑝𝑝, 𝑝𝑝 ∈ 𝒫𝒫2𝑟𝑟−1. 

Giả sử 𝑄𝑄 là một toán tử giả nội suy từ (1 − 2), 
cho ℎ > 0 và một hàm 𝑓𝑓 xác định trên ℝ, chúng ta 
xác định toán tử 𝑄𝑄(. ; ℎ) bởi 

𝑄𝑄(𝑓𝑓; ℎ): = 𝜎𝜎ℎ ∘ 𝑄𝑄 ∘ 𝜎𝜎1/ℎ(𝑓𝑓), 

ở đây 𝜎𝜎ℎ(𝑓𝑓, 𝑥𝑥) = 𝑓𝑓(𝑥𝑥/ℎ). Từ định nghĩa của 
𝑄𝑄(𝑓𝑓; ℎ), ta có 

𝑄𝑄(𝑓𝑓, 𝑥𝑥; ℎ) = � 
𝑘𝑘∈ℤ

Λ(𝑓𝑓, 𝑘𝑘; ℎ)𝑀𝑀(ℎ−1𝑥𝑥 − 𝑘𝑘), 

với Λ(𝑓𝑓, 𝑘𝑘; ℎ) = ∑  𝑗𝑗∈𝑃𝑃(𝜇𝜇) 𝜆𝜆(𝑗𝑗)𝑓𝑓(ℎ(𝑘𝑘 − 𝑗𝑗)). 
Toán tử 𝑄𝑄(. ;ℎ) có các tính chất tương tự như toán 
tử 𝑄𝑄, cũng được gọi là một toán tử giả nội suy trên 
𝐶𝐶(ℝ). Nhưng 𝑄𝑄(. ; ℎ) không được định nghĩa cho 𝑓𝑓 
trên 𝕀𝕀, do đó chưa khôi phục được hàm số 𝑓𝑓 với các 
điểm lấy mẫu trong 𝕀𝕀. Một cách tiếp cận đượcDinh 
(2009) và Dinh (2011b) đề xuất để xây dựng toán tử 
giả nội suy cho một hàm số trên 𝕀𝕀 là mở rộng nó 
bằng các đa thức nội suy Lagrange.  

Cho một số nguyên không âm 𝑘𝑘, đặt 𝑥𝑥𝑗𝑗 =
𝑗𝑗2−𝑘𝑘, 𝑗𝑗 ∈ ℤ. Nếu 𝑓𝑓 là một hàm số trên 𝕀𝕀, ký hiệu 
𝑈𝑈𝑘𝑘(𝑓𝑓) và 𝑉𝑉𝑘𝑘(𝑓𝑓) lần lượt là các đa thức nội suy 
Lagrange tại 2𝑟𝑟 điểm bên trái 𝑥𝑥0, 𝑥𝑥1, … , 𝑥𝑥2𝑟𝑟−1 và 2𝑟𝑟 
điểm bên phải 𝑥𝑥2𝑘𝑘−2𝑟𝑟+1, 𝑥𝑥2𝑘𝑘−2𝑟𝑟+3, … , 𝑥𝑥2𝑘𝑘 trên đoạn 
𝕀𝕀 được xác định bởi:  

𝑈𝑈𝑘𝑘(𝑓𝑓, 𝑥𝑥) ≔ 𝑓𝑓(𝑥𝑥0) + �  
2𝑟𝑟−1

𝑠𝑠=1

 
2𝑠𝑠𝑠𝑠Δ2−𝑘𝑘

𝑠𝑠 𝑓𝑓(𝑥𝑥0)
𝑠𝑠!

� 
𝑠𝑠−1

𝑗𝑗=0

 �𝑥𝑥 − 𝑥𝑥𝑗𝑗�

𝑉𝑉𝑘𝑘(𝑓𝑓, 𝑥𝑥): = 𝑓𝑓�𝑥𝑥2𝑘𝑘−2𝑟𝑟+1� + �  
2𝑟𝑟−1

𝑠𝑠=1

 
2𝑠𝑠𝑠𝑠Δ2−𝑘𝑘

𝑠𝑠 𝑓𝑓�𝑥𝑥2𝑘𝑘−2𝑟𝑟+1�
𝑠𝑠!

� 
𝑠𝑠−1

𝑗𝑗=0

 �𝑥𝑥 − 𝑥𝑥2𝑘𝑘−2𝑟𝑟+1+𝑗𝑗�.

 

Ký hiệu 𝑓𝑓‾𝑘𝑘 là hàm số mở rộng của 𝑓𝑓 trên ℝ và 
được xác định bởi: 

𝑓𝑓‾𝑘𝑘(𝑥𝑥) = �
𝑈𝑈𝑘𝑘(𝑓𝑓, 𝑥𝑥), 𝑥𝑥 < 0
𝑓𝑓(𝑥𝑥), 0 ≤ 𝑥𝑥 ≤ 1
𝑉𝑉𝑘𝑘(𝑓𝑓, 𝑥𝑥), 𝑥𝑥 > 1.    

 

Nếu 𝑓𝑓 liên tục trên 𝕀𝕀 thì 𝑓𝑓‾𝑘𝑘 liên tục trên ℝ. Giả 
sử 𝑄𝑄 là một toán tử giả nội suy (1 − 2) trên 𝐶𝐶(ℝ). 
Chúng ta xây dựng toán tử 𝑄𝑄𝑘𝑘 xác định bởi 

𝑄𝑄𝑘𝑘(𝑓𝑓, 𝑥𝑥): = 𝑄𝑄�𝑓𝑓‾𝑘𝑘, 𝑥𝑥; 2−𝑘𝑘�, 𝑥𝑥 ∈ 𝕀𝕀 

với hàm 𝑓𝑓 trên 𝕀𝕀. Khi đó, 
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𝑄𝑄𝑘𝑘(𝑓𝑓, 𝑥𝑥) = �  
𝑠𝑠∈𝐽𝐽(𝑘𝑘)

𝑎𝑎𝑘𝑘,𝑠𝑠(𝑓𝑓)𝑀𝑀𝑘𝑘,𝑠𝑠(𝑥𝑥),∀𝑥𝑥 ∈ 𝕀𝕀, 

trong đó 

𝐽𝐽(𝑘𝑘): = {𝑠𝑠 ∈ ℤ,−𝑟𝑟 < 𝑠𝑠 < 2𝑘𝑘 + 𝑟𝑟} 

và 

𝑎𝑎𝑘𝑘,𝑠𝑠(𝑓𝑓): = Λ�𝑓𝑓‾𝑘𝑘, 𝑠𝑠; 2−𝑘𝑘�

= �  
|𝑗𝑗|≤𝜇𝜇

𝜆𝜆(𝑗𝑗)𝑓𝑓‾𝑘𝑘�2−𝑘𝑘(𝑠𝑠 − 𝑗𝑗)�. 

Chúng ta nhận thấy 𝑄𝑄𝑘𝑘 cũng là toán tử giả nội 
suy trên 𝐶𝐶(𝕀𝕀). 

Cho 𝑘𝑘 ∈ ℤ+𝑑𝑑 , ta định nghĩa toán tử hỗn hợp 
 𝑄𝑄𝑘𝑘 : 

𝑄𝑄𝑘𝑘: = � 
𝑑𝑑

𝑖𝑖=1

 𝑄𝑄𝑘𝑘  ′ (3) 

ở đây các toán tử một biến 𝑄𝑄𝑘𝑘𝑖𝑖  được áp dụng 
tương tự cho hàm số một biến khi xem 𝑓𝑓 là hàm số 
một biến 𝑥𝑥𝑖𝑖 và các biến còn lại cố định. Ta cũng định 
nghĩa 𝑑𝑑-biến 𝐵𝐵-spline 𝑀𝑀𝑘𝑘,𝑠𝑠 như sau: 

𝑀𝑀𝑘𝑘,𝑠𝑠(𝑥𝑥): = � 
𝑑𝑑

𝑖𝑖=1

 𝑀𝑀𝑘𝑘𝑖𝑖,𝑠𝑠𝑖𝑖(𝑥𝑥𝑖𝑖). (4) 

Chúng ta xây dựng toán tử nhiều biến 𝑄𝑄𝑘𝑘 được 
xác định bởi: 

𝑄𝑄𝑘𝑘(𝑓𝑓, 𝑥𝑥) = �  
𝑠𝑠∈𝐽𝐽(𝑘𝑘)

𝑎𝑎𝑘𝑘,𝑠𝑠(𝑓𝑓)𝑀𝑀𝑘𝑘,𝑠𝑠(𝑥𝑥),∀𝑥𝑥 ∈ 𝕀𝕀𝑑𝑑 

Ở đây 

𝐽𝐽(𝑘𝑘): = {𝑠𝑠 ∈ ℤ𝑑𝑑,−𝑟𝑟 < 𝑠𝑠𝑖𝑖 < 2𝑘𝑘𝑖𝑖+𝑘𝑘0 + 𝑟𝑟, 𝑖𝑖
= 1,2, … ,𝑑𝑑} 

là tập hợp các giá trị của 𝑠𝑠 sao cho 𝑀𝑀𝑘𝑘,𝑠𝑠 không 
đồng nhất bằng 0 trên 𝕀𝕀𝑑𝑑. Chú ý rằng 

𝑎𝑎𝑘𝑘,𝑠𝑠(𝑓𝑓) = 𝑎𝑎𝑘𝑘1,𝑠𝑠1 ��𝑎𝑎𝑘𝑘2,𝑠𝑠2�…𝑎𝑎𝑘𝑘𝑑𝑑,𝑠𝑠𝑑𝑑(𝑓𝑓)�� (5) 

với các hàm hệ số 𝑎𝑎𝑘𝑘𝑖𝑖,𝑠𝑠𝑖𝑖  được áp dụng tương tự 
cho hàm số một biến khi xem 𝑓𝑓 là hàm số một biến 
𝑥𝑥𝑖𝑖 với các biến còn lại cố định. 

Tương tự như toán tử 𝑄𝑄 và 𝑄𝑄(. ; ℎ), thì toán tử 
𝑄𝑄𝑘𝑘 là tuyến tính bị chặn trên 𝐶𝐶(𝕀𝕀𝑑𝑑) và tái tạo 𝒫𝒫2𝑟𝑟−1. 
Đặc biệt, chúng ta có: 

‖𝑄𝑄𝑘𝑘(𝑓𝑓)‖𝐶𝐶�ℝ𝑑𝑑� ≤ 𝐶𝐶‖Λ‖‖𝑓𝑓‖𝐶𝐶�ℝ𝑑𝑑� (6) 

với mỗi 𝑓𝑓 ∈ 𝐶𝐶(𝕀𝕀𝑑𝑑), hằng số 𝐶𝐶 không phụ thuộc 
𝑘𝑘 và 

𝑄𝑄𝑘𝑘(𝜑𝜑∗) = 𝜑𝜑, ∀𝜑𝜑 ∈ 𝒫𝒫2𝑟𝑟−1, 

trong đó 𝜑𝜑∗ là hạn chế của 𝜑𝜑 trên 𝕀𝕀𝑑𝑑. Toán tử 
nhiều biến 𝑄𝑄𝑘𝑘 được gọi là toán tử giả nội suy trên 
𝐶𝐶(𝕀𝕀𝑑𝑑). 

Cho 𝑘𝑘 ∈ ℤ+, đặt 𝑞𝑞𝑘𝑘: = 𝑄𝑄𝑘𝑘 − 𝑄𝑄𝑘𝑘−1 với quy ước 
𝑄𝑄−1(𝑓𝑓) = 0, chúng ta có 

𝑄𝑄𝑘𝑘 = �  
𝑘𝑘′≤𝑘𝑘

𝑞𝑞𝑘𝑘′ . 

Bổ đề 1. Giả sử 𝑓𝑓 ∈ 𝐶𝐶(𝕀𝕀𝑑𝑑). Khi đó, ta có 

‖𝑓𝑓 − 𝑄𝑄𝑘𝑘(𝑓𝑓)‖∞ ≤ 𝐶𝐶𝜔𝜔2𝑟𝑟(𝑓𝑓, 2−𝑘𝑘)∞. (7) 

Do đó: 

‖𝑓𝑓 − 𝑄𝑄𝑘𝑘(𝑓𝑓)‖∞ → 0, 𝑘𝑘 → ∞. (8) 

Bất đẳng thức (7) được suy ra từ (2,29) - (2,31) 
trong (Dinh, 2011b) và bất đẳng thức (6). 

Cho bất kỳ 𝑓𝑓 ∈ 𝐶𝐶(𝕀𝕀𝑑𝑑), từ (8) suy ra 𝑓𝑓 có thể biểu 
diễn thành chuỗi 

𝑓𝑓 = �  
𝑘𝑘∈ℤ+

 𝑞𝑞𝑘𝑘(𝑓𝑓), (9) 

với 

𝑞𝑞𝑘𝑘(𝑓𝑓) = �  
𝑠𝑠∈𝐽𝐽(𝑘𝑘)

𝑐𝑐𝑘𝑘,𝑠𝑠(𝑓𝑓)𝑀𝑀𝑘𝑘,𝑠𝑠      , 

chuỗi này hội tụ theo chuẩn trong 𝐿𝐿∞(𝕀𝕀𝑑𝑑), 𝑐𝑐𝑘𝑘,𝑠𝑠 là 
các phiếm hàm hệ số của 𝑓𝑓, được xác định như sau. 
Đầu tiên xác định 𝑐𝑐𝑘𝑘,𝑠𝑠 cho hàm số một biến: 

𝑐𝑐𝑘𝑘,𝑠𝑠(𝑓𝑓): = 𝑎𝑎𝑘𝑘,𝑠𝑠(𝑓𝑓) − 𝑎𝑎𝑘𝑘,𝑠𝑠
′ (𝑓𝑓), 𝑘𝑘 ≥ 0,

𝑎𝑎𝑘𝑘,𝑠𝑠
′ (𝑓𝑓): = 2−2𝑟𝑟+1 �  

(𝑚𝑚,𝑗𝑗)∈𝐶𝐶𝑟𝑟(𝑘𝑘,𝑠𝑠)

  �
2𝑟𝑟
𝑗𝑗
� 𝑎𝑎𝑘𝑘−1,𝑚𝑚(𝑓𝑓),   𝑘𝑘 > 0, 𝑎𝑎0,𝑠𝑠

′ (𝑓𝑓): = 0, 

ở đây 

𝐶𝐶𝑟𝑟(𝑘𝑘, 𝑠𝑠): = {(𝑚𝑚, 𝑗𝑗): 2𝑚𝑚 + 𝑗𝑗 − 𝑟𝑟 = 𝑠𝑠,𝑚𝑚
∈ 𝐽𝐽(𝑘𝑘 − 1),0 ≤ 𝑗𝑗 ≤ 2𝑟𝑟}, 

với 𝑘𝑘 > 0,𝐶𝐶𝑟𝑟(0, 𝑠𝑠): = {0}. Trong trường hợp 
hàm nhiều biến, chúng ta xác định 𝑐𝑐𝑘𝑘,𝑠𝑠 tương tự như 
(5), tức là 



Tạp chí Khoa học Đại học Cần Thơ   Tập 61, Số 6A (2025): 96-103 

100 

𝑐𝑐𝑘𝑘,𝑠𝑠(𝑓𝑓) = 𝑐𝑐𝑘𝑘1,𝑠𝑠1 ��𝑐𝑐𝑘𝑘2,𝑠𝑠2�… 𝑐𝑐𝑘𝑘𝑑𝑑,𝑠𝑠𝑑𝑑(𝑓𝑓)�� , 

với các hàm hệ số 𝑐𝑐𝑘𝑘𝑖𝑖,𝑠𝑠𝑖𝑖  áp dụng cho hàm số một 
biến khi xem 𝑓𝑓 là hàm số với biến 𝑥𝑥𝑖𝑖 với các biến 
còn lại cố định. 

Cho 𝑘𝑘 ∈ ℤ+𝑑𝑑 , ký hiệu Σ(𝑘𝑘) là không gian sinh bởi 
các B-splines 𝑀𝑀𝑘𝑘,𝑠𝑠𝑠𝑠 ∈ 𝐽𝐽(𝑘𝑘). Nếu 0 < 𝑝𝑝 ≤ ∞ thì 𝑔𝑔 ∈
Σ(𝑘𝑘) được biểu diễn bởi 

𝑔𝑔 = �  
𝑠𝑠∈𝐽𝐽(𝑘𝑘)

𝑎𝑎𝑠𝑠𝑀𝑀𝑘𝑘,𝑠𝑠 

và đẳng thức sau (Dinh, 2011b) 

‖𝑔𝑔‖𝑝𝑝 ≍ 2−|𝑘𝑘|1/𝑝𝑝‖{𝑎𝑎𝑠𝑠}‖𝑝𝑝,𝑘𝑘   ′ (10) 

ở đây 

‖{𝑎𝑎𝑠𝑠}‖𝑝𝑝,𝑘𝑘: = � �  
𝑠𝑠∈𝐽𝐽(𝑘𝑘)

 |𝑎𝑎𝑠𝑠|𝑝𝑝�

1/𝑝𝑝

, 

với vế phải thay bằng supremum khi 𝑝𝑝 = ∞.  

Chúng ta cần bất đẳng thức về chuẩn trong 
𝐿𝐿𝑝𝑝(𝐷𝐷) như sau: Nếu 𝜏𝜏 là số thỏa mãn 0 < 𝜏𝜏 ≤
min(𝑝𝑝, 1) thì với dãy hàm bất kỳ {𝑓𝑓𝑘𝑘} ⊂ 𝐿𝐿𝑝𝑝(𝐷𝐷) ta 
có bất đẳng thức 

��  
𝑘𝑘∈ℤ+

 𝑓𝑓𝑘𝑘�

𝑝𝑝,𝐷𝐷

𝜏𝜏

≤ �  
𝑘𝑘∈ℤ+

 ‖𝑓𝑓𝑘𝑘‖𝑝𝑝,𝐷𝐷
𝜏𝜏 . (11) 

Định lý sau đây được chứng minh trong (Dinh, 
2016). 

Định lý 1. Cho 0 < 𝑝𝑝,𝜃𝜃 ≤ ∞ và 𝑎𝑎 ∈ ℝ+
𝑑𝑑 . Khi đó 

ta có  

(i) Nếu 1/𝑝𝑝 < 𝛼𝛼 < 2𝑟𝑟 thì một hàm số 𝑓𝑓 ∈ 𝐵𝐵𝑝𝑝,𝜃𝜃
𝑎𝑎  

có thể biểu diễn thành chuỗi (9) và 

𝐵𝐵2(𝑓𝑓) ≔ ��  
𝑘𝑘∈ℤ+

𝑑𝑑

 �2(𝑎𝑎,𝑘𝑘)‖𝑞𝑞𝑘𝑘(𝑓𝑓)‖𝑝𝑝�
𝜃𝜃
�

1
𝜃𝜃

≪ ‖𝑓𝑓‖𝐵𝐵𝑝𝑝,𝜃𝜃
𝑎𝑎 . (12)

 

(ii) Nếu 0 < 𝛼𝛼 < 𝑚𝑚𝑚𝑚𝑚𝑚(2𝑟𝑟, 2𝑟𝑟 − 1 + 1/𝑝𝑝) và g 
là một hàm số được biểu diễn bởi 

𝑔𝑔 = �  
𝑘𝑘∈ℤ+

𝑑𝑑

𝑔𝑔𝑘𝑘 = �  
𝑘𝑘∈ℤ+

𝑑𝑑

�  
𝑠𝑠∈𝐽𝐽(𝑘𝑘)

𝑐𝑐𝑘𝑘,𝑠𝑠𝑀𝑀𝑘𝑘,𝑠𝑠 

sao cho 

𝐵𝐵4(𝑔𝑔): = ��  
𝑘𝑘∈ℤ+

𝑑𝑑

 �2(𝑎𝑎,𝑘𝑘)‖𝑔𝑔𝑘𝑘‖𝑝𝑝�
𝜃𝜃�

1/𝜃𝜃

< ∞, 

thì 𝑔𝑔 ∈ 𝐵𝐵𝑝𝑝,𝜃𝜃
𝑎𝑎  và 

‖𝑔𝑔‖𝑏𝑏𝑝𝑝,𝜃𝜃
𝑎𝑎 ≪ 𝐵𝐵4(𝑔𝑔). 

(iii) Nếu 1/𝑝𝑝 < 𝛼𝛼 < 𝑚𝑚𝑚𝑚𝑚𝑚(2𝑟𝑟, 2𝑟𝑟 − 1 + 1/𝑝𝑝) thì 
một hàm số 𝑓𝑓 xác định trên 𝕀𝕀𝑑𝑑 thuộc 𝐵𝐵𝑝𝑝,𝜃𝜃

𝑎𝑎  khi và chỉ 
khi 𝑓𝑓 có thể biểu diễn thành chuỗi có dạng (9) thỏa 
mãn điều kiện (12). Hơn nữa, chuẩn ‖𝑓𝑓‖𝐵𝐵𝑝𝑝,𝜃𝜃

𝑎𝑎  là 
tương đương với chuẩn 𝐵𝐵2(𝑓𝑓). 

Từ định lý 1, một hàm số thuộc không gian 
Besov 𝐵𝐵𝑝𝑝,𝜃𝜃

𝑎𝑎  được biểu diễn thành chuỗi các B-spline 
và chuẩn Besov tương đương với chuẩn 𝐵𝐵2(𝑓𝑓), việc 
biểu diễn này là công cụ để chứng minh định lý 2 
được trình bày ở phần tiếp theo. 

3. KHÔI PHỤC VÀ XẤP XỈ HÀM SỐ 
BẰNG PHƯƠNG PHÁP TUYẾN TÍNH 

Phương pháp về bất đẳng thức đã được sử dụng, 
ta chứng minh được kết quả sau đây: Cho 𝑎𝑎, 𝑏𝑏 ≥
0, 0 < 𝑞𝑞 < ∞,  ta có 

(𝑎𝑎 + 𝑏𝑏)𝑞𝑞 ≍ 𝑎𝑎𝑞𝑞 + 𝑏𝑏𝑞𝑞. 

Khi đó  𝐿𝐿𝑞𝑞(𝕀𝕀𝑑𝑑) là một không gian với “giả 
chuẩn” tích phân ‖ ⋅ ‖𝑞𝑞 thông thường cho trường 
hợp 0 < 𝑞𝑞 < ∞ và không gian 𝐶𝐶(𝕀𝕀𝑑𝑑) các hàm liên 
tục với chuẩn max‖ ⋅ ‖∞ cho 𝑞𝑞 = ∞ theo nghĩa:   
∀  𝑓𝑓,𝑔𝑔 ∈ 𝐿𝐿𝑞𝑞(𝕀𝕀𝑑𝑑) ta có 

‖𝑓𝑓 + 𝑔𝑔 ‖𝑞𝑞 ≤ 𝐶𝐶(‖𝑓𝑓 ‖𝑞𝑞 + ‖𝑔𝑔 ‖𝑞𝑞 ), 

với hằng số 𝐶𝐶 = 𝐶𝐶(𝑝𝑝) > 0.   

Chúng ta xét bài toán khôi phục xấp xỉ hàm số 
xác định trên 𝕀𝕀𝑑𝑑 = [0,1]𝑑𝑑. Hàm số cần khôi phục 
thuộc tập hợp  𝑊𝑊 ⊂ 𝐿𝐿𝑞𝑞(𝕀𝕀𝑑𝑑), 0 < 𝑞𝑞 ≤ ∞. 

Định nghĩa 3. Cho 𝑋𝑋𝑛𝑛 = {𝑥𝑥𝑗𝑗}𝑗𝑗=1𝑛𝑛  là 𝑛𝑛 điểm của 
𝕀𝕀𝑑𝑑 ,𝛷𝛷𝑛𝑛 = �𝜑𝜑𝑗𝑗�𝑗𝑗=1

𝑛𝑛
 là họ 𝑛𝑛 hàm số thuộc không gian 

𝐿𝐿𝑞𝑞(𝕀𝕀𝑑𝑑). Để khôi phục hàm số 𝑓𝑓 được xác định trên 
𝕀𝕀𝑑𝑑 từ các giá trị lấy mẫu 𝑓𝑓(𝑥𝑥1), … , 𝑓𝑓(𝑥𝑥𝑛𝑛), chúng ta 
định nghĩa phương pháp tuyến tính dựa trên giá trị 
lấy mẫu 𝐿𝐿𝑛𝑛(𝑋𝑋𝑛𝑛 ,𝛷𝛷𝑛𝑛, . ) bởi công thức sau đây 

𝐿𝐿𝑛𝑛(𝑋𝑋𝑛𝑛 ,𝛷𝛷𝑛𝑛, 𝑓𝑓): = � 
𝑛𝑛

𝑗𝑗=1

 𝑓𝑓(𝑥𝑥𝑗𝑗)𝜑𝜑𝑗𝑗  . (13) 

Cho 𝑊𝑊 ⊂ 𝐿𝐿𝑞𝑞(𝕀𝕀𝑑𝑑). Chúng ta nghiên cứu tính tối 
ưu của phương pháp tuyến tính có dạng (13) để khôi 
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phục hàm số 𝑓𝑓 ∈ 𝑊𝑊 từ 𝑛𝑛 giá trị lấy mẫu bằng đại 
lượng sau 

𝜚𝜚𝑛𝑛 �𝑊𝑊, 𝐿𝐿𝑞𝑞(𝕀𝕀𝑑𝑑)� : = inf
𝑋𝑋𝑛𝑛,𝛷𝛷𝑛𝑛

 sup
𝑓𝑓∈𝑊𝑊

 ‖𝑓𝑓

− 𝐿𝐿𝑛𝑛(𝑋𝑋𝑛𝑛 ,𝛷𝛷𝑛𝑛 , 𝑓𝑓)‖𝑞𝑞 . 

Định nghĩa 3 có thể xem trong Nguyen và Mai, 
2018. 

Cho số nguyên không âm 𝑚𝑚, đặt 𝐾𝐾(𝜉𝜉): =
�(𝑘𝑘, 𝑠𝑠): 𝑘𝑘 ∈ Δ𝜉̃𝜉 , 𝑠𝑠 ∈ 𝐼𝐼𝑑𝑑(𝑘𝑘)�, ở đây 𝐼𝐼𝑑𝑑(𝑘𝑘) = {𝑠𝑠 ∈
ℤ+𝑑𝑑 : 0 ≤ 𝑠𝑠𝑖𝑖 ≤ 2𝑘𝑘𝑖𝑖} và ký hiệu 𝑀𝑀(𝜉𝜉) là tập hợp gồm 
các 𝐵𝐵-splines 𝑀𝑀𝑘𝑘,𝑠𝑠, 𝑘𝑘 ∈ Δ𝜁̃𝜁 , 𝑠𝑠 ∈ 𝐽𝐽(𝑘𝑘). Tập hợp 
𝐺𝐺(𝜉𝜉): = �2−ks: (𝑘𝑘, 𝑠𝑠) ∈ 𝐾𝐾(𝜉𝜉)� các điểm thuộc 
𝕀𝕀𝑑𝑑  được gọi là lưới Smolyak (Nikol'skii, 1975).   

Chúng ta định nghĩa toán tử 𝑅𝑅Δ của các hàm số 
𝑓𝑓 ∈ 𝐵𝐵𝑝𝑝,𝜃𝜃

𝑎𝑎  bởi 

𝑅𝑅Δ(𝑓𝑓) ≔ �  
𝑘𝑘∈Δ𝜉𝜉

𝑞𝑞𝑘𝑘(𝑓𝑓) = �  
𝑘𝑘∈Δ𝜉̃𝜉

�  
𝑠𝑠∈𝐽𝐽(𝑘𝑘)

𝑐𝑐𝑘𝑘,𝑠𝑠(𝑓𝑓)𝑀𝑀𝑘𝑘,𝑠𝑠. 

Bổ đề sau đây được suy ra từ Bổ đề 3.1 trong 
Dinh (2016). 

Bổ đề 2.  Toán tử 𝑅𝑅𝛥𝛥 xác định một phương pháp 
tuyê̂n tính có dạng (13) trên lưới 𝐺𝐺(𝜉𝜉). Cụ thể, 

𝑅𝑅𝛥𝛥(𝑓𝑓) = 𝐿𝐿𝑛𝑛(𝑋𝑋𝑛𝑛,𝛷𝛷𝑛𝑛 , 𝑓𝑓) = �  
(𝑘𝑘,𝑠𝑠)∈𝐾𝐾(𝜉𝜉)

𝑓𝑓(2−𝑘𝑘𝑠𝑠)𝜓𝜓𝑘𝑘,𝑠𝑠 

ở đây 𝑋𝑋𝑛𝑛: = 𝐺𝐺(𝜉𝜉),𝛷𝛷𝑛𝑛: = �𝜓𝜓𝑘𝑘,𝑠𝑠�(𝑘𝑘,𝑠𝑠)∈𝐾𝐾(𝜉𝜉)  
, 

𝑛𝑛: = |𝐺𝐺(𝜉𝜉)| = �  
𝑘𝑘∈𝛥𝛥𝜉𝜉

2|𝑘𝑘|1 ≍ 2𝜉̃𝜉/𝛼𝛼𝜏𝜏𝑠𝑠 

và 𝜓𝜓𝑘𝑘,𝑠𝑠 được xác định là tổ hợp tuyến tính của 
không quá 𝑁𝑁𝑁𝑁-splines 𝑀𝑀𝑘𝑘,𝑠𝑠 ∈ 𝑀𝑀(𝜉𝜉) với 𝑁𝑁 độc lập 
với 𝑘𝑘, 𝑗𝑗, 𝜉𝜉 và 𝑓𝑓. 

Để chứng minh kết quả chính của bài báo, ta cần 
thêm bổ đề sau. 

Bổ đề 3. Cho 𝜉𝜉 là một số tự nhiên, ký hiệu 𝛥𝛥𝜉𝜉: =
{𝑘𝑘 ∈ ℤ+𝑑𝑑 : (𝑎𝑎, 𝑘𝑘) ≤ 𝜉𝜉}. Khi đó tồn tại các hằng số 
dương 𝐶𝐶1 và 𝐶𝐶2 sao cho 

𝐶𝐶22𝜉𝜉/𝑟𝑟𝜉𝜉𝑠𝑠 ≤ �  
𝑘𝑘∈𝛥𝛥𝜉𝜉

 2|𝑘𝑘|1 ≤ 𝐶𝐶12𝜉𝜉/𝑟𝑟𝜉𝜉𝑠𝑠. (14) 

Việc chứng minh Bổ đề 3 được thể hiện trong 
nghiên cứu của Nguyen (2021) và Dinh (2000). 
Định lý sau đây là kết quả chính và mới của bài báo, 
ở đó chúng ta xây dựng được phương pháp tuyến 
tính 𝑅𝑅𝛥𝛥(𝑓𝑓)việc đánh giá tiệm cận tốc độ hội tụ của 

phương pháp được thực hiện để khôi phục hàm số 
thuộc không gian Besov 𝐵𝐵𝑝𝑝,𝜃𝜃

𝑎𝑎 , 𝑎𝑎 ∈ ℝ+
𝑑𝑑 . 

Định lý 2. Cho 0 < 𝑝𝑝, 𝑞𝑞, 𝜃𝜃 ≤ ∞, 𝑝𝑝 ≥ 𝑞𝑞. Giả sử 
với mỗi 𝑛𝑛 ∈ ℤ+, 𝜉𝜉 là số tự nhiên lớn nhất thỏa mãn 

|𝐺𝐺(𝜉𝜉)| ≤ 𝑛𝑛. (15) 

Khi đó 𝑅𝑅𝛥𝛥 xác định phương pháp tuyến tính lấy 
mẫu tối ưu cho 𝜚𝜚𝑛𝑛: = 𝜚𝜚𝑛𝑛�𝑈𝑈𝑝𝑝,𝜃𝜃

𝑎𝑎 , 𝐿𝐿𝑞𝑞� như sau 

𝑅𝑅𝛥𝛥(𝑓𝑓) = 𝐿𝐿𝑛𝑛(𝑋𝑋𝑛𝑛∗ ,𝛷𝛷𝑛𝑛∗, 𝑓𝑓) = �  
(𝑘𝑘,𝑠𝑠)∈𝐾𝐾(𝜉𝜉)

 𝑓𝑓�2−ks �𝜓𝜓𝑘𝑘,𝑠𝑠(16) 

trong đó 𝑋𝑋𝑛𝑛∗: = 𝐺𝐺(𝜉𝜉) = {2−𝑘𝑘𝑠𝑠 ∶ (𝑘𝑘, 𝑠𝑠) ∈
𝐾𝐾(𝜉𝜉)},𝛷𝛷𝑛𝑛∗: = �𝜓𝜓𝑘𝑘,𝑠𝑠�(𝑘𝑘,𝑠𝑠)∈𝐾𝐾(𝜉𝜉)

 và ta có  

sup
𝑓𝑓∈𝑈𝑈𝑝𝑝,𝜃𝜃

𝑎𝑎
 ‖𝑓𝑓 − 𝑅𝑅𝛥𝛥(𝑓𝑓)‖𝑞𝑞 ≍ 𝜚𝜚𝑛𝑛 ≍ 𝑛𝑛−𝛼𝛼𝑙𝑙𝑙𝑙𝑙𝑙2𝑠𝑠𝑠𝑠𝑛𝑛. (17) 

Chứng minh.  

Đánh giá cận trên. Theo Bổ đề 3 và do ξ là số tự 
nhiên lớn nhất thỏa mãn (15) nên ta có 

|𝐺𝐺(𝜉𝜉)| ≍ 2𝜉𝜉/𝛼𝛼𝜉𝜉𝑠𝑠 ≍ 𝑛𝑛. (18) 

Từ đó suy ra tồn tại các hằng số dương 𝐶𝐶1,𝐶𝐶2 sao 
cho: 𝐶𝐶1𝑛𝑛 ≤ 2𝜉𝜉/𝛼𝛼𝜉𝜉𝑠𝑠 ≤ 𝐶𝐶2𝑛𝑛. 

Ta có 

log2 𝐶𝐶1 + log2 𝑛𝑛 ≤
𝜉𝜉
𝛼𝛼

+ 𝑠𝑠 log2 𝜉𝜉
≤ log2 𝐶𝐶2 + log2 𝑛𝑛. 

Do đó 
log2 𝐶𝐶1

𝜉𝜉
+

log2 𝑛𝑛
𝜉𝜉

≤
1
𝛼𝛼

+ 𝑠𝑠
log2 𝜉𝜉
𝜉𝜉

≤
log2 𝐶𝐶2
𝜉𝜉

+
log2 𝑛𝑛
𝜉𝜉

,  

cho 𝑛𝑛 → ∞ thì 𝜉𝜉 → ∞, ta được 𝜉𝜉 ≍ log2𝑛𝑛 và do 
đó 

2−𝜉𝜉 ≍ 𝑛𝑛−𝛼𝛼log2𝑠𝑠𝑠𝑠𝑛𝑛. (19) 

Xét 𝑝𝑝 ≥ 𝑞𝑞. Xuất phát từ bất đẳng thức ‖𝑓𝑓‖𝑞𝑞 ≤
‖𝑓𝑓‖𝑝𝑝 dẫn đến chứng minh cho trường hợp này với 
𝑞𝑞 = 𝑝𝑝. Do 𝐵𝐵𝑝𝑝,𝜃𝜃

𝑎𝑎 ⊂ 𝐵𝐵𝑝𝑝,∞
𝑎𝑎 , chúng ta chỉ cần chứng 

minh cận trên của (17) cho 𝜃𝜃 = ∞. Chúng ta lấy tùy 
ý 𝜉𝜉 ∈ ℤ+, 

sup
𝑓𝑓∈𝑈𝑈𝑝𝑝,∞

𝑎𝑎
 ‖𝑓𝑓 − 𝑅𝑅Δ(𝑓𝑓)‖𝑝𝑝 ≪ 2−𝜉𝜉 (20) 

Lấy bất kỳ 𝑓𝑓 ∈ 𝑈𝑈𝑝𝑝,∞
𝑎𝑎 . Đặt 𝜏𝜏 = min(𝑝𝑝, 1), định lý 

1 và (11) được sử dụng, chúng ta nhận được 
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‖𝑓𝑓 − 𝑅𝑅Δ(𝑓𝑓)‖𝑝𝑝𝜏𝜏  ≪ �  
𝑘𝑘∈ℤ+

𝑑𝑑∖Δ𝜉̃𝜉

 ‖𝑞𝑞𝑘𝑘(𝑓𝑓)‖𝑝𝑝𝜏𝜏

 ≪ ‖𝑓𝑓‖𝐵𝐵𝑝𝑝,∞
𝑎𝑎

𝜏𝜏 �  
𝑘𝑘∈ℤ+

𝑑𝑑∖Δ𝜉̃𝜉

 2−𝜏𝜏(𝑎𝑎,𝑘𝑘)

 ≪ �  
𝑘𝑘∈ℤ+

𝑑𝑑∖Δ𝜉̃𝜉

 2−𝜏𝜏(𝑎𝑎,𝑘𝑘) .

  (21) 

Tiếp tục đánh giá (21), ký hiệu 
 ∑  𝑘𝑘∈ℤ+

𝑑𝑑∖Δ𝜉𝜉
2−𝜏𝜏(𝑎𝑎,𝑘𝑘): = ∑  (𝜉𝜉). Ta có  

�  (𝜉𝜉) ≍ �  
𝑊𝑊(𝜉𝜉)

2−𝜏𝜏(𝑎𝑎,𝑘𝑘)𝑑𝑑𝑑𝑑 , 

với 𝑊𝑊(𝜉𝜉) = {𝑥𝑥 ∈ ℝ+
𝑑𝑑 : 𝜏𝜏(𝑎𝑎, 𝑥𝑥) > 𝜏𝜏𝜏𝜏}, đặt 

  𝑉𝑉(𝜉𝜉, 𝑠𝑠) = {𝑥𝑥 ∈ 𝑊𝑊(𝜉𝜉): 𝜏𝜏𝜏𝜏 + 𝑠𝑠 − 1 ≤ 𝜏𝜏(𝑎𝑎, 𝑥𝑥)
< 𝜏𝜏𝜏𝜏 + 𝑠𝑠}, 𝑠𝑠 ∈ ℕ 

và  |𝑉𝑉(𝜉𝜉, 𝑠𝑠)| là lực lượng của tập hợp 𝑉𝑉(𝜉𝜉, 𝑠𝑠). Vì 
vậy ta có  

�  (𝜉𝜉) ≍ 2−𝜏𝜏𝜏𝜏�  
∞

𝑠𝑠=1

2−𝑠𝑠|𝑉𝑉(𝜉𝜉, 𝑠𝑠)|. 

Mặt khác |𝑉𝑉(𝜉𝜉, 𝑠𝑠)| ≪ 𝑠𝑠𝑑𝑑  (xem chứng minh 
trong (Dinh, 2016)). Do đó 

∑  (𝜉𝜉) ≪ 2−𝜏𝜏𝜏𝜏 ∑  ∞
𝑠𝑠=1 2−𝑠𝑠𝑠𝑠𝑑𝑑 ≍ 2−𝜏𝜏𝜏𝜏 . 

Từ bất đẳng thức cuối cùng và (21) ta nhận được 
(20). Từ (18) và 𝑅𝑅Δ(𝑓𝑓) được xác định bởi (16), nhận 
thấy rằng số giá trị lấy mẫu trong 𝑅𝑅Δ(𝑓𝑓) là |𝐺𝐺(𝜉𝜉)| ≍
𝑛𝑛. Ngoài ra kết hợp với (19), chúng ta có 

sup
𝑓𝑓∈𝑈𝑈

 ‖𝑓𝑓 − 𝑅𝑅Δ(𝑓𝑓)‖𝑞𝑞 ≪ 𝑛𝑛−𝛼𝛼log2𝑠𝑠𝑠𝑠𝑛𝑛 

Đánh giá cận dưới. Ký hiệu 𝑈𝑈𝑝𝑝,𝜃𝜃
𝑎𝑎∗ (𝕀𝕀𝑠𝑠+1) là hình 

cầu đơn vị trong không gian Besov  

𝐵𝐵𝑝𝑝,𝜃𝜃
𝑎𝑎∗ (𝕀𝕀𝑠𝑠+1), 𝐵𝐵𝑝𝑝,𝜃𝜃

𝑎𝑎∗ (𝕀𝕀𝑠𝑠+1) ⊂ 𝐿𝐿𝑞𝑞(𝕀𝕀𝑠𝑠+1), trong đó 
𝑎𝑎∗: = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑠𝑠+1) = (𝛼𝛼,𝛼𝛼, … ,𝛼𝛼) ∈ ℝ+

𝑠𝑠+1. 
Trong (Dinh, 2011a) tác giả đã chứng minh được 
rằng với các điều kiện có trong định lý thì 

𝜚𝜚𝑛𝑛 �𝑈𝑈𝑝𝑝,𝜃𝜃
𝑎𝑎∗ (𝕀𝕀𝑠𝑠+1), 𝐿𝐿𝑞𝑞(𝕀𝕀𝑠𝑠+1)� ≍ 𝑛𝑛−𝛼𝛼log2𝑠𝑠𝑠𝑠𝑛𝑛. 

Chúng ta suy ra 

𝜚𝜚𝑛𝑛 �𝑈𝑈𝑝𝑝,𝜃𝜃
𝑎𝑎∗ (𝕀𝕀𝑠𝑠+1), 𝐿𝐿𝑞𝑞(𝕀𝕀𝑠𝑠+1)� ≫ 𝑛𝑛−𝛼𝛼log2𝑠𝑠𝑠𝑠𝑛𝑛. (22) 

Chú ý rằng cho bất kỳ hàm số 𝑓𝑓 ∈ 𝐿𝐿𝑞𝑞(𝕀𝕀𝑠𝑠+1), thì 
hàm số 𝑔𝑔: 𝕀𝕀𝑑𝑑 → ℝ được xác định bởi 
𝑔𝑔(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑑𝑑) = 𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑠𝑠+1), thuộc không 
gian 𝐿𝐿𝑞𝑞(𝕀𝕀𝑑𝑑). Ngoài ra, nếu 𝑓𝑓 ∈ 𝑈𝑈𝑝𝑝,𝜃𝜃

𝑎𝑎∗ (𝕀𝕀𝑠𝑠+1), thì 𝑔𝑔 ∈
𝑈𝑈𝑝𝑝,𝜃𝜃
𝑎𝑎 (𝕀𝕀𝑑𝑑). Do đó chúng ta có 

𝜚𝜚𝑛𝑛 �𝑈𝑈𝑝𝑝,𝜃𝜃
𝑎𝑎 (𝕀𝕀𝑑𝑑), 𝐿𝐿𝑞𝑞(𝕀𝕀𝑑𝑑)� ≥ 𝜚𝜚𝑛𝑛 �𝑈𝑈𝑝𝑝,𝜃𝜃

𝑎𝑎∗ (𝕀𝕀𝑠𝑠+1), 𝐿𝐿𝑞𝑞(𝕀𝕀𝑠𝑠+1)� (23) 

Từ các bất đẳng thức (22), (23) ta được 

𝜚𝜚𝑛𝑛 �𝑈𝑈𝑝𝑝,𝜃𝜃
𝑎𝑎 (𝕀𝕀𝑑𝑑), 𝐿𝐿𝑞𝑞(𝕀𝕀𝑑𝑑)� ≫ 𝑛𝑛−𝛼𝛼log2𝑠𝑠𝑠𝑠𝑛𝑛. 

Đánh giá cận dưới được hoàn thành. Từ các đánh 
giá cận trên, cận dưới ở trên, chúng ta có ước lượng 
tiệm cận tốc độ hội tụ của phương pháp tuyến  
tính là 

𝜚𝜚𝑛𝑛 ≍ 𝑛𝑛−𝛼𝛼log2𝑠𝑠𝑠𝑠𝑛𝑛. 

4. KẾT LUẬN 

Bài báo được thực hiện nhằm nghiên cứu khôi 
phục và xấp xỉ hàm số bằng phương pháp tuyến tính 
cho lớp hàm số thuộc không gian Besov 𝐵𝐵𝑝𝑝,𝜃𝜃

𝑎𝑎  với độ 
trơn hỗn hợp, việc xây dựng và đánh giá tiệm cận 
tốc độ hội tụ của phương pháp qua đại lượng đặc 
trưng cũng đã được tiến hành. Kết quả mới của bài 
báo là mở rộng và tổng quát kết quả của Dinh 
(2011a) và Dinh (2016) cho trường hợp 𝑝𝑝 ≥ 𝑞𝑞. 
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