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TÓM TẮT 
Trong bài báo, việc thiết lập các điều kiện tối ưu cho các dạng 
nghiệm hữu hiệu liên quan đến tập hợp bất kỳ và nón lùi xa của nó 
cho bài toán tối ưu vector đã được thực hiện. Đầu tiên, các định lý 
tách cho tập lồi, các khái niệm về tập cải tiến và nón lùi xa của một 
tập bất kỳ được nhắc lại, đồng thời một số tính chất mới của chúng 
cũng được khảo sát. Sau đó, mô hình bài toán tối ưu vector cùng 
với nghiệm hữu hiệu Pareto tương ứng với tập hợp bất kỳ và 
nghiệm hữu hiệu Benson tương ứng với nón lùi xa của bài toán tối 
ưu vector được xem xét. Cuối cùng, bằng cách sử dụng phương 
pháp vô hướng hóa tuyến tính, các điều kiện cần và đủ tối ưu cho 
các nghiệm hữu hiệu này được thiết lập. 

Từ khoá: Bài toán tối ưu vector, nghiệm hữu hiệu, nghiệm hữu 
hiệu Benson, điều kiện tối ưu, tập cải tiến, nón lùi xa, phương pháp 
vô hướng hóa 

ABSTRACT 
In the paper, optimality conditions are established for various types 
of efficient solutions associated with an arbitrary set and its 
recession cone in the vector optimization problem. First, the 
separation theorems for convex sets, the concepts of improvement 
sets, and the recession cone of an arbitrary set are recalled, and 
some of their new properties are also investigated. Then, the model 
of the vector optimization problem is examined, along with its Pareto 
efficient solutions corresponding to an arbitrary set and Benson 
efficient solutions corresponding to the recession cone. Finally, by 
employing the linear scalarization method, necessary and sufficient 
optimality conditions for these efficient solutions are derived. 

Keywords: Vector optimization problem, efficient solution, Benson 
efficient solution, optimality condition, improvement set, recession 
cone, scalarization method 
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1. GIỚI THIỆU 

Tối ưu hóa là một lĩnh vực quan trọng trong toán 
học, có ứng dụng rộng trong nhiều ngành khoa học 
khác nhau như vật lý, sinh học, kinh tế, y học, kỹ 
thuật và các lĩnh vực khoa học khác. Trong những 
năm qua, tối ưu hóa đã góp phần quan trọng vào sự 
phát triển của các ngành này, trở thành một lĩnh vực 
năng động và không ngừng tiến bộ. Các công trình 
đáng chú ý như Fan (1972), Luc (1989), Muu & 
Oettli (1992), Mordukhovich (2006), Khan et al. 
(2015),... là những minh chứng cụ thể cho sự phát 
triển của lý thuyết tối ưu như đã đề cập ở trên.  

Về cơ bản, các bài toán tối ưu hóa được xác định 
thông qua việc tìm cực trị của hàm mục tiêu trên một 
tập hợp không rỗng. Khi hàm mục tiêu là một hàm 
vector, bài toán được gọi là "tối ưu vector" (Luc, 
1989; Ehrgott, 2005). Các chủ đề nghiên cứu chính 
trong tối ưu vector bao gồm sự tồn tại nghiệm 
(Maeda, 2012; Gutiérrez et al., 2014; Kim et al., 
2021; Anh et al., 2023), tính ổn định nghiệm 
(Tanino, 1988; Lucchetti & Miglierina, 2004; 
Eichfelder & Jahn, 2011; Peng et al., 2018; Kapoor 
& Lalitha, 2022; Han & Zhao, 2023; Peng et al., 
2024; Anh et al., 2025), các tính chất nghiệm 
(Hirschberger, 2005; Maggioni & Wallace, 2012; 
Anh et al., 2021; Anh et al., 2022; Han, 2023), điều 
kiện tối ưu và thuật toán (Dempe et al., 2007; 
Andreani et al., 2011; Wei et al., 2018; Ustun et al., 
2021; Zhou & Kuang, 2023; Wang et al., 2024; Anh 
et al., 2025; Zhou et al., 2025). Đặc biệt, điều kiện 
tối ưu là một trong những chủ đề được quan tâm 
nhiều nhờ tính ứng dụng rộng rãi trong toán học, 
kinh tế và kỹ thuật. 

Tối ưu vector có rất nhiều dạng nghiệm khác 
nhau, tùy thuộc vào các yêu cầu cần đạt trong việc 
giải quyết các tình huống thực tế như nghiệm 
Edgeworth (Edgeworth, 1881), nghiệm Pareto 
(Pareto, 1906), nghiệm Geoffrion (Geoffrion, 
1968), nghiệm Borwein (Borwein, 1977), nghiệm 
Benson (Benson, 1979), nghiệm Henig (Henig, 
1982) và nhiều dạng nghiệm khác. Cấu trúc của nón 
thứ tự đóng vai trò quan trọng trong việc xác định 
các dạng nghiệm hữu hiệu đã được đề cập trước đó. 
Vì vậy, việc nghiên cứu các mô hình tối ưu thông 
qua  điều chỉnh và mở rộng cấu trúc nón đã trở thành 
một chủ đề thu hút sự quan tâm của nhiều nhà toán 
học trong thời gian gần đây. Theo hướng tiếp cận 
này, nón thứ tự được thay thế bởi tập cải tiến và nón 
lùi xa của một tập bất kỳ trong các bài toán tối ưu. 
Zhou et al. (2019) đã sử dụng tập cải tiến, các hàm 
vô hướng phi tuyến để khảo sát điều kiện tối ưu của 
bài toán tối ưu tập có ràng buộc dưới một số giả thiết 

thích hợp về tính lồi tổng quát của ánh xạ đa trị. 
Trong Peng et al. (2023), các tác giả đã khảo sát tính 
tối ưu và tính đóng của tập nghiệm trong bài toán tối 
ưu tập dựa trên quan hệ thứ tự tập. Thứ tự tập mà 
các tác giả sử dụng để thiết lập kết quả phụ thuộc 
vào tập cải tiến, chứ không phải là thứ tự theo nón. 
Hơn nữa, bằng cách sử dụng các tập mức trên, sự 
hội tụ Painlevé-Kuratowski của nghiệm hữu hiệu 
yếu tương ứng với tập cải tiến của bài toán tối ưu tập 
có tập ràng buộc bị nhiễu bởi tham số được thiết lập 
dưới các điều kiện liên thông và nửa liên tục của ánh 
xạ mục tiêu. Về bài toán tối ưu thông qua nón lùi xa 
với các công trình tiêu biểu như: Peng et al. (2024) 
đã nghiên cứu tính ổn định của bài toán tối ưu tập 
thông qua tập thứ tự tổng quát. Các điều kiện đủ của 
sự hội tụ trên Painlevé-Kuratowski của các tập 
nghiệm xấp xỉ, sự hội tụ Painlevé-Kuratowski của 
các tập nghiệm xấp xỉ yếu của bài toán được thiết 
lập bằng cách sử dụng các tính chất của nón lùi xa 
và tập mức. Gần đây, Zhou et al. (2025) cũng đã sử 
dụng tập cải tiến và nón lùi xa để giới thiệu khái 
niệm nghiệm hữu hiệu Benson của các bài toán cân 
bằng đa trị và thiết lập các điều kiện tối ưu cho 
nghiệm hữu hiệu Benson của các bài toán đó bằng 
phương pháp vô hướng hóa tuyến tính và phi tuyến. 

Dựa trên ý tưởng từ các nghiên cứu trước, bài 
báo này được thực hiện tập trung vào việc xem xét 
các điều kiện tối ưu cho các dạng nghiệm hữu hiệu 
Pareto và nghiệm hữu hiệu Benson cho bài toán tối 
ưu vector dựa trên các cấu trúc trội và nón lùi xa của 
một tập bất kỳ.  

2. KIẾN THỨC CHUẨN BỊ 

Cho 𝕏𝕏,𝕐𝕐 là các không gian định chuẩn, 𝑋𝑋 là tập 
con khác rỗng của 𝕏𝕏, 𝐸𝐸 là tập con khác rỗng của 𝕐𝕐. 
Ta ký hiệu phần trong và bao đóng của 𝐸𝐸 lần lượt là 
int𝐸𝐸 and cl𝐸𝐸. Tập 𝐸𝐸 được gọi là đặc (rắn) nếu  
int𝐸𝐸 ≠ ∅. Gọi 𝕐𝕐∗ là không gian đối ngẫu của 𝕐𝕐 và 
𝐶𝐶 là nón lồi đóng có đỉnh trong 𝕐𝕐 với phần trong 
khác rỗng (int𝐶𝐶 ≠ ∅). Khi đó, theo Bổ đề 3.21 trong 
Jahn (2011), ta được  

int𝐶𝐶 = {𝑦𝑦 ∈ 𝕐𝕐:𝜓𝜓(𝑦𝑦) > 0,∀𝜓𝜓 ∈ 𝐶𝐶∗\{0𝕐𝕐∗}}. (2.1) 
Tập đối ngẫu và tập đối ngẫu chặt của 

𝐸𝐸  ký hiệu tương ứng là  𝐸𝐸∗ và 𝐸𝐸# được định nghĩa 
như sau: 

𝐸𝐸∗: = {𝜓𝜓 ∈ 𝕐𝕐∗:𝜓𝜓(𝑦𝑦) ≥ 0,∀𝑦𝑦 ∈ 𝐸𝐸}, 

và 

𝐸𝐸#: = �𝜓𝜓 ∈ 𝕐𝕐∗:𝜓𝜓(𝑦𝑦) > 0,∀𝑦𝑦 ∈ 𝐸𝐸\{0𝕐𝕐}�. 

Từ những định nghĩa trên, ta suy ra rằng 
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(−𝐸𝐸)∗ = −(𝐸𝐸)∗. 

Bổ đề 2.1. (Zhou & Kuang, 2023, Bổ đề 2.2) 
Nếu  𝐸𝐸 ⊂ 𝕐𝕐 là một tập lồi với phần trong khác rỗng 
thì   

𝐸𝐸∗ = (int𝐸𝐸)∗. 

Bổ đề 2.2. (Jahn, 2011, Định lý 3.16) Nếu 𝐷𝐷1, 
𝐷𝐷2 là những tập con lồi khác rỗng trong 𝕐𝕐  với 
int𝐷𝐷1 ≠ ∅ thì int𝐷𝐷1 ∩ 𝐷𝐷2 = ∅ khi và chỉ khi có một 
hàm tuyến tính 𝜓𝜓 ∈ 𝕐𝕐∗\{0𝕐𝕐∗} và số thực 𝜇𝜇 thỏa  

𝜓𝜓(𝑑𝑑1) ≤ 𝜇𝜇 ≤ 𝜓𝜓(𝑑𝑑2),∀𝑑𝑑1 ∈ 𝐷𝐷1,∀𝑑𝑑2 ∈ 𝐷𝐷2, 

và 

𝜓𝜓(𝑑𝑑1) < 𝜇𝜇,   ∀𝑑𝑑1 ∈ int𝐷𝐷1. 

Bổ đề 2.3. (Borwein, 1977, Proposition 3) Nếu 
𝑆𝑆1, 𝑆𝑆2 là những nón lồi đóng trong 𝕐𝕐 sao cho 𝑆𝑆1 ∩
(−𝑆𝑆2) = {0𝕐𝕐}, 𝑆𝑆2 có đỉnh và có cơ sở compact thì 
𝑆𝑆2# ∩ 𝑆𝑆1∗ ≠ ∅. 

Bổ đề 2.4.  (Anh et al., 2023, Bổ đề 2.9) Nếu 𝐸𝐸 ∩
int𝐶𝐶 = ∅ thì 

cl𝐸𝐸 ∩ int𝐶𝐶 = ∅. 

Định nghĩa 2.1. (Luc, 1989, Định nghĩa 1.5) 
Cho 𝐵𝐵 là tập con khác rỗng của 𝕐𝕐. Ta nói rằng 

(a) 𝐵𝐵 sinh ra nón 𝐶𝐶, ký hiệu 𝐶𝐶 = cone(𝐵𝐵), nếu  

𝐶𝐶 = cone(𝐵𝐵) = {𝑡𝑡𝑡𝑡: 𝑡𝑡 ≥ 0, 𝑏𝑏 ∈ 𝐵𝐵}; 

(b) 𝐵𝐵 là một cơ sở của 𝐶𝐶 nếu 𝐵𝐵 không chứa phần 
tử 0𝕐𝕐 và với mỗi 𝑐𝑐 ∈ 𝐶𝐶, 𝑐𝑐 ≠ 0𝕐𝕐, có duy nhất 𝑏𝑏 ∈
𝐵𝐵, 𝑡𝑡 > 0 sao cho 𝑐𝑐 = 𝑡𝑡𝑡𝑡. 

Nếu 𝐵𝐵 là một cơ sở của 𝐶𝐶 thì cone(𝐵𝐵) = 𝐶𝐶. 

Định nghĩa 2.2. (Gutiérrez et al., 2012) Cho ∅ ≠
𝐸𝐸 ⊂ 𝕐𝕐. Khi đó, tập hợp 𝐸𝐸 được gọi là 

(a) Tập free disposal ứng với nón 𝐶𝐶 nếu  

𝐸𝐸 + 𝐶𝐶 = 𝐸𝐸; 

(b) Tập cải tiến ứng với nón 𝐶𝐶 nếu  0𝕐𝕐 ∉ 𝐸𝐸 và 
𝐸𝐸 + 𝐶𝐶 = 𝐸𝐸. Họ các tập cải tiến ứng với nón 𝐶𝐶 được 
ký hiệu là 𝐈𝐈C; 

(c) Tập co-radiant nếu với mọi 𝑦𝑦 ∈ 𝐸𝐸 và 𝜆𝜆 ≥ 1 
thì 𝜆𝜆𝜆𝜆 ∈ 𝐸𝐸. 

Định nghĩa 2.3. (Gutiérrez et al., 2012) Nón lùi 
xa của tập 𝐸𝐸 được định nghĩa là  

𝐸𝐸∞: = {𝑢𝑢 ∈ 𝕐𝕐: 𝑒𝑒 + 𝛼𝛼𝛼𝛼 ∈ 𝐸𝐸,∀ 𝑒𝑒 ∈ 𝐸𝐸,∀ 𝛼𝛼 > 0}. 

Ta khảo sát một số tính chất quan trọng của tập 
cải tiến và nón lùi xa được dùng trong việc chứng 
minh kết quả chính của bài báo. 

Bổ đề 2.5.  Ta có các tính chất sau đây: 

(a) −𝐸𝐸∞ = (−𝐸𝐸)∞;  

(b) 𝐸𝐸 là tập free disposal ứng với 𝐸𝐸∞. Hơn nữa, 
nếu 0𝕐𝕐 ∉ 𝐸𝐸 thì 𝐸𝐸 là tập cải tiến ứng với 𝐸𝐸∞;   

(c) Nếu 𝐸𝐸 lồi và 𝐸𝐸∞ đặc thì int𝐸𝐸 = 𝐸𝐸 + int𝐸𝐸∞; 

(d) Nếu 𝐸𝐸 là tập co-radiant thì 𝐸𝐸 ⊆ 𝐸𝐸∞; 

(e) Nếu tồn tại một nón 𝐾𝐾 trong 𝕐𝕐 sao cho 𝐸𝐸 ∈
𝐈𝐈𝐾𝐾  thì 𝐾𝐾 ⊆ Ω∞;  

(f) 𝐸𝐸∞ là nón lồi. Hơn nữa, nếu 𝐸𝐸 đóng thì 𝐸𝐸∞ là 
nón đóng;  

(g) Nếu tồn tại một nón đóng có đỉnh 𝐾𝐾 trong 𝕐𝕐 
sao cho 𝐸𝐸 ⊆ 𝐾𝐾 thì 𝐸𝐸∞ là nón có đỉnh.  

(h) 𝐸𝐸 ∈ 𝐈𝐈cone(𝐸𝐸) nếu và chỉ nếu 𝐸𝐸 ⊆ 𝐸𝐸∞\{0𝕐𝕐}.   

Chứng minh. (a) Ta có  

(−𝐸𝐸)∞: = {𝑢𝑢 ∈ 𝕐𝕐: 𝑒𝑒 + 𝛼𝛼𝛼𝛼 ∈ (−𝐸𝐸),∀𝑒𝑒 ∈ −𝐸𝐸,
∀𝛼𝛼 > 0}. 

(⊆) Lấy 𝑢𝑢 ∈ −𝐸𝐸∞ tùy ý, ta có −𝑢𝑢 ∈ 𝐸𝐸∞, điều 
này kéo theo 

𝑒𝑒 + 𝛼𝛼(−𝑢𝑢) ∈ 𝐸𝐸,   ∀𝑒𝑒 ∈ 𝐸𝐸,∀𝛼𝛼 > 0. 

Do đó,  

−𝑒𝑒 + 𝛼𝛼𝛼𝛼 ∈ −𝐸𝐸,   ∀(−𝑒𝑒) ∈ −𝐸𝐸,∀𝛼𝛼 > 0. 

Cho 𝑒̂𝑒: = −𝑒𝑒, ta được  

𝑒̂𝑒 + 𝛼𝛼𝛼𝛼 ∈ −𝐸𝐸,   ∀𝑒̂𝑒 ∈ −𝐸𝐸,∀𝛼𝛼 > 0, 

nên 𝑢𝑢 ∈ (−𝐸𝐸)∞. 

(⊇) Với phần tử tùy ý 𝑢𝑢 ∈ (−𝐸𝐸)∞, ta có  

𝑒𝑒 + 𝛼𝛼𝛼𝛼 ∈ −𝐸𝐸,   ∀𝑒𝑒 ∈ −𝐸𝐸,∀𝛼𝛼 > 0, 

kéo theo  

−𝑒𝑒 + 𝛼𝛼(−𝑢𝑢) ∈ 𝐸𝐸,   ∀(−𝑒𝑒) ∈ 𝐸𝐸,∀𝛼𝛼 > 0. 

Lấy 𝑒̅𝑒: = −𝑒𝑒, ta được  
𝑒̅𝑒 + 𝛼𝛼(−𝑢𝑢) ∈ 𝐸𝐸,   ∀𝑒̅𝑒 ∈ 𝐸𝐸,∀𝛼𝛼 > 0, 

điều đó dẫn đến −𝑢𝑢 ∈ 𝐸𝐸∞, cho nên 𝑢𝑢 ∈ −𝐸𝐸∞. 

(b) Vì  0𝕐𝕐 ∈ 𝐸𝐸∞ nên 𝐸𝐸 ⊂ 𝐸𝐸 + 𝐸𝐸∞. Lấy bất kỳ 
𝑦𝑦 ∈ 𝐸𝐸 + 𝐸𝐸∞, khi đó, ta có thể tìm được 𝑒𝑒1 ∈ 𝐸𝐸 và 
𝑒𝑒2 ∈ 𝐸𝐸∞ sao cho  

𝑦𝑦 = 𝑒𝑒1 + 𝑒𝑒2. 

Do 𝑒𝑒2 ∈ 𝐸𝐸∞, ta được 
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𝑤𝑤 + 𝛼𝛼𝑒𝑒2 ∈ 𝐸𝐸,   ∀𝑤𝑤 ∈ 𝐸𝐸,∀𝛼𝛼 > 0. 

Chọn 𝑤𝑤 = 𝑒𝑒1,𝛼𝛼 = 1, khi đó ta có 

𝑦𝑦 = 𝑒𝑒1 + 𝑒𝑒2 ∈ 𝐸𝐸. 

Do đó, 𝐸𝐸 + 𝐸𝐸∞ = 𝐸𝐸, nên 𝐸𝐸 là tập free disposal. 
Điều này kết hợp với 0𝕐𝕐 ∉ 𝐸𝐸 cho ta kết luận 𝐸𝐸 là tập 
cải tiến ứng với 𝐸𝐸∞. 

(c) Từ (b) ta có 𝐸𝐸 + 𝐸𝐸∞ = 𝐸𝐸. Từ đẳng thức (2.7) 
trong Tanaka và Kuroiwa (1993) cho ta 

int𝐸𝐸∞ + 𝐸𝐸 = int(𝐸𝐸∞ + 𝐸𝐸) = int𝐸𝐸 . 

(d) Lấy tùy ý phần tử 𝑦𝑦 ∈ 𝐸𝐸, vì 𝐸𝐸 là tập co-
radiant nên ta có (1 + 𝜆𝜆)𝑦𝑦 ∈ 𝐸𝐸 với mọi 𝜆𝜆 > 0. Điều 
đó tương đương với 

𝑦𝑦 + 𝜆𝜆𝜆𝜆 ∈ 𝐸𝐸,   ∀𝑦𝑦 ∈ 𝐸𝐸,∀𝜆𝜆 > 0, 

kéo theo 𝑦𝑦 ∈ 𝐸𝐸∞. 
(e) Với phần tử bất kỳ 𝑘𝑘 ∈ 𝐾𝐾 thì với mọi 𝜆𝜆 > 0, 

ta có 𝜆𝜆𝜆𝜆 ∈ 𝐾𝐾 vì 𝐾𝐾 là nón. Do 𝐸𝐸 ∈ 𝐈𝐈𝐾𝐾, với mọi 𝑏𝑏 ∈
𝐸𝐸, ta có  

𝑏𝑏 + 𝜆𝜆𝜆𝜆 ∈ 𝐸𝐸 + 𝐾𝐾 = 𝐸𝐸. 

Nên ta thu được 𝑘𝑘 ∈ 𝐸𝐸∞, và vì vậy 𝐾𝐾 ⊆ 𝐸𝐸∞. 

(f) Trước tiên, với bất kỳ 𝑑𝑑 ∈ 𝐸𝐸∞, ta có  

𝑒𝑒 + 𝛼𝛼𝛼𝛼 ∈ 𝐸𝐸,   ∀𝑒𝑒 ∈ 𝐸𝐸,∀ 𝛼𝛼 > 0. 

Cho 𝜆𝜆 ≥ 0 tùy ý, ta được  
𝑒𝑒 + 𝛼𝛼(𝜆𝜆𝜆𝜆) = 𝑒𝑒 + (𝛼𝛼𝛼𝛼)𝑑𝑑 ∈ 𝐸𝐸,   ∀𝑒𝑒 ∈ 𝐸𝐸,∀ 𝛼𝛼 > 0,  

suy ra 𝛼𝛼𝛼𝛼 ∈ 𝐸𝐸∞ và do đó 𝐸𝐸∞ là nón. 

Tiếp theo, cho 𝑑𝑑1,𝑑𝑑2 ∈ 𝐸𝐸∞ tùy ý và 0 ≤ 𝑡𝑡 ≤ 1, 
ta có 

𝑒𝑒 + 𝛼𝛼𝑑𝑑1 ∈ 𝐸𝐸  và  𝑒𝑒 + 𝛼𝛼𝑑𝑑2 ∈ 𝐸𝐸,   

với mọi 𝑒𝑒 ∈ 𝐸𝐸 và 𝛼𝛼 > 0, từ đó dẫn đến 

𝑒𝑒 + 𝛼𝛼𝛼𝛼𝑑𝑑1 ∈ 𝐸𝐸 và 𝑒𝑒 + 𝛼𝛼(1 − 𝑡𝑡)𝑑𝑑2 ∈ 𝐸𝐸, 

với mọi 𝑒𝑒 ∈ 𝐸𝐸 và  𝛼𝛼 > 0. 

Do đó, 

𝑒𝑒 + 𝛼𝛼(𝑡𝑡𝑑𝑑1 + (1 − 𝑡𝑡)𝑑𝑑2) 

= (𝑒𝑒 + 𝛼𝛼𝛼𝛼𝑑𝑑1) + 𝛼𝛼(1 − 𝑡𝑡)𝑑𝑑2 
= 𝑒̂𝑒 + 𝛼𝛼(1 − 𝑡𝑡)𝑑𝑑2 ∈ 𝐸𝐸, 

với mọi 𝑒𝑒 ∈ 𝐸𝐸 và 𝛼𝛼 > 0. Suy ra 

𝑡𝑡𝑑𝑑1 + (1 − 𝑡𝑡)𝑑𝑑2 ∈ 𝐸𝐸∞. 

Vì vậy, 𝐸𝐸∞ là nón lồi. 

Bây giờ, ta chứng minh rằng 𝐸𝐸∞ đóng, giả sử 
{𝑑𝑑𝑛𝑛} ⊂ 𝐸𝐸∞ sao cho {𝑑𝑑𝑛𝑛} → 𝑑𝑑0. Vì 𝑑𝑑𝑛𝑛 ∈ 𝐸𝐸∞ nên với 
mọi 𝑒𝑒 ∈ 𝐸𝐸 và 𝛼𝛼 > 0, ta có 𝑒𝑒 + 𝛼𝛼𝑑𝑑𝑛𝑛 ∈ 𝐸𝐸 với mọi 𝑛𝑛. 
Do 𝑒𝑒 + 𝛼𝛼𝑑𝑑𝑛𝑛 hội tụ về 𝑒𝑒 + 𝛼𝛼𝑑𝑑0 và 𝐸𝐸 là tập đóng nên 
ta có 𝑒𝑒 + 𝛼𝛼𝑑𝑑0 ∈ 𝐸𝐸, kéo theo 𝑑𝑑0 ∈ 𝐸𝐸∞. Từ đó ta được 
𝐸𝐸∞ là tập đóng. 

 (g) Cho 𝑢𝑢 ∈ 𝐸𝐸∞ ∩ (−𝐸𝐸∞) tùy ý, theo Bổ đề 2.5 
(a), ta có 

𝑢𝑢 ∈ 𝐸𝐸∞ ∩ (−𝐸𝐸)∞. 

Từ đó, ta được 𝑢𝑢 ∈ 𝐸𝐸∞ and 𝑢𝑢 ∈ (−𝐸𝐸)∞, suy ra 

𝑒𝑒1 + 𝛼𝛼𝛼𝛼 ∈ 𝐸𝐸,   ∀𝑒𝑒1 ∈ 𝐸𝐸, ∀𝛼𝛼 > 0, 

và  

𝑒𝑒2 + 𝛼𝛼𝛼𝛼 ∈ −𝐸𝐸,   ∀𝑒𝑒2 ∈ −𝐸𝐸,∀𝛼𝛼 > 0. 

Do đó,  

𝑢𝑢 ∈ �
1
𝛼𝛼
𝐸𝐸 −

1
𝛼𝛼
𝑒𝑒1� ∩ �−

1
𝛼𝛼
𝐸𝐸 −

1
𝛼𝛼
𝑒𝑒2� 

⊆ �𝐾𝐾 −
1
𝛼𝛼
𝑒𝑒1� ∩ �−𝐾𝐾 −

1
𝛼𝛼
𝑒𝑒2�, 

với mọi 𝑒𝑒1 ∈ 𝐸𝐸, 𝑒𝑒2 ∈ −𝐸𝐸 và 𝛼𝛼 > 0. Khi 𝛼𝛼 → ∞, 
ta  thu được 𝑢𝑢 ∈ cl𝐾𝐾 ∩ (−cl𝐾𝐾). Vì 𝐾𝐾 là nón đóng và 
có đỉnh nên 

𝑢𝑢 ∈ 𝐾𝐾 ∩ (−𝐾𝐾) = {0𝕐𝕐}. 

Từ đó ta được 𝑢𝑢 = 0𝕐𝕐, và vì vậy 𝐸𝐸∞ có đỉnh.       

(h) Với 𝑑𝑑 ∈ 𝐸𝐸 bất kỳ thì 𝑑𝑑 ≠ 0𝕐𝕐 khi 𝐸𝐸 là tập cải 
tiến. Vì 𝐸𝐸 + cone(𝐸𝐸) = 𝐸𝐸 nên 

𝑒𝑒 + 𝜆𝜆𝜆𝜆 ∈ 𝐸𝐸, 

với mọi 𝑒𝑒 ∈ 𝐸𝐸, 𝜆𝜆 > 0. Do đó, 𝑑𝑑 ∈ 𝐸𝐸∞, điều này 
kết hợp với 𝑑𝑑 ≠ 0𝕐𝕐 dẫn đến 𝑑𝑑 ∈ 𝐸𝐸∞\{0𝕐𝕐}. Vậy  

𝐸𝐸 ⊂ 𝐸𝐸∞\{0𝕐𝕐}. 

Ngược lại, giả sử 𝐸𝐸 ⊂ 𝐸𝐸∞\{0𝕐𝕐}, ta có 𝐸𝐸 ⊆ 𝐸𝐸 +
cone(𝐸𝐸) vì 0𝕐𝕐 ∈ cone(𝐸𝐸). Lấy 𝑦𝑦 ∈ 𝐸𝐸 + cone(𝐸𝐸) 
tùy ý, tồn tại 𝑒𝑒1 ∈ 𝐸𝐸, 𝜆𝜆 ≥ 0 và 𝑒𝑒2 ∈ 𝐸𝐸 sao cho 

𝑦𝑦 = 𝑒𝑒1 + 𝜆𝜆𝑒𝑒2. 

+ Nếu 𝜆𝜆 = 0 thì 𝑦𝑦 = 𝑒𝑒1 ∈ 𝐸𝐸.  

+ Nếu 𝜆𝜆 > 0 thì 

𝑒𝑒2 ∈ 𝐸𝐸 ⊆ 𝐸𝐸∞\{0𝕐𝕐} ⊂ 𝐸𝐸∞, 

điều này kéo theo 𝑦𝑦 = 𝑒𝑒1 + 𝜆𝜆𝑒𝑒2 ∈ 𝐸𝐸.  

Do đó, 𝐸𝐸 + cone(𝐸𝐸) ⊆ 𝐸𝐸.                                     ∎ 

Định nghĩa 2.4. Ánh xạ có giá trị vector 𝑓𝑓: 𝕏𝕏 →
𝕐𝕐 được gọi là 𝐸𝐸-gần dưới giống lồi trên 𝑋𝑋 nếu 
clcone(𝑓𝑓(𝑋𝑋) + 𝐸𝐸) là tập lồi trong 𝕐𝕐. 
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3. ĐIỀU KIỆN TỐI ƯU CHO NGHIỆM 
HỮU HIỆU CỦA BÀI TOÁN TỐI ƯU 
VECTOR  

Cho 𝕏𝕏,𝕐𝕐,𝑋𝑋,𝐸𝐸 được định nghĩa như trong Mục 
2. Ta xét bài toán tối ưu vector như sau:  

(VOP) min𝑓𝑓(𝑥𝑥)   thỏa mãn  𝑥𝑥 ∈ 𝑋𝑋, 

trong đó 𝑓𝑓:𝑋𝑋 → 𝕐𝕐 là ánh xạ có giá trị vector. 

Do 𝐸𝐸 là một tập cải tiến ứng với nón 𝐸𝐸∞, dựa vào 
Định nghĩa 4.1 trong Gutiérrez et al. (2012), ta có 
định nghĩa nghiệm hữu hiệu Pareto của bài toán 
(VOP) tương ứng với 𝐸𝐸 như sau: 

Định nghĩa 3.1. Phần tử 𝑥𝑥0 ∈ 𝑋𝑋 được gọi là 
nghiệm hữu hiệu Pareto của (VOP) tương ứng với 
E, ký hiệu  𝑥𝑥0 ∈ Eff(VOP)(𝑓𝑓,𝐸𝐸), nếu 

�𝑓𝑓(𝑋𝑋) − 𝑓𝑓(𝑥𝑥0)� ∩ (−𝐸𝐸) = ∅,  

trong đó 𝑓𝑓(𝑋𝑋) = {𝑓𝑓(𝑥𝑥):𝑥𝑥 ∈ 𝑋𝑋}. 

Hơn nữa, lấy ý tưởng từ Định nghĩa 3.6 trong 
Zhao et al. (2014), ta xét định nghĩa nghiệm hữu 
hiệu Benson của bài toán (VOP) tương ứng với nón 
lùi xa 𝐸𝐸∞ như sau: 

Định nghĩa 3.2. Phần tử 𝑥𝑥0 ∈ 𝑋𝑋 được gọi là 
nghiệm hữu hiệu Benson của (VOP) tương ứng với 
𝐸𝐸∞, ký hiệu  𝑥𝑥0 ∈ BEff(VOP)(𝑓𝑓,𝐸𝐸∞), nếu  

cl�cone(𝑓𝑓(𝑋𝑋) − 𝑓𝑓(𝑥𝑥0) + 𝐸𝐸)� ∩ (−𝐸𝐸∞) = {0𝕐𝕐}.  

Đầu tiên, ta xét các điều kiện tối ưu cho nghiệm 
hữu hiệu Pareto tương ứng với 𝐸𝐸 của bài toán (VOP) 
qua các kết quả sau đây.  

Định lý 3.1. Với 𝜓𝜓 ∈ 𝐸𝐸∞∗ \{0𝕐𝕐∗} cho trước. Giả 
sử 𝑥𝑥0 ∈ 𝑋𝑋 sao cho  

𝜓𝜓�𝑓𝑓(𝑥𝑥)� − 𝜓𝜓�𝑓𝑓(𝑥𝑥0)� ≥ 𝜓𝜓(𝑒𝑒),∀𝑥𝑥 ∈ 𝑋𝑋,∀𝑒𝑒 ∈ −𝐸𝐸.   

Khi đó, ta có 

𝑥𝑥0 ∈ Eff(VOP)(𝑓𝑓,𝐸𝐸). 

Chứng minh. Vì 

𝜓𝜓�𝑓𝑓(𝑥𝑥)� − 𝜓𝜓�𝑓𝑓(𝑥𝑥0)� ≥ 𝜓𝜓(𝑒𝑒),∀𝑥𝑥 ∈ 𝑋𝑋,∀𝑒𝑒 ∈ −𝐸𝐸,   

và 𝜓𝜓 ∈ 𝐸𝐸∞∗ \{0𝕐𝕐∗} nên  
𝜓𝜓(𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑥𝑥0) − 𝑒𝑒) ≥ 0,∀𝑥𝑥 ∈ 𝑋𝑋,∀𝑒𝑒 ∈ −𝐸𝐸. (3.1)              

Giả sử 𝑥𝑥0 ∉ Eff(VOP)(𝑓𝑓,𝐸𝐸), tức là 

�𝑓𝑓(𝑋𝑋) − 𝑓𝑓(𝑥𝑥0)� ∩ (−𝐸𝐸) ≠ ∅. 

Khi đó, tồn tại  𝑥𝑥� ∈ 𝑋𝑋 sao cho  
𝑓𝑓(𝑥𝑥�) − 𝑓𝑓(𝑥𝑥0) ∈ −𝐸𝐸 = −𝐸𝐸 − 𝐸𝐸∞, 

từ đó ta tìm được 𝑒̅𝑒  ∈ −𝐸𝐸, 𝑢𝑢� ∈ −𝐸𝐸∞ để 

𝑓𝑓(𝑥𝑥�) − 𝑓𝑓(𝑥𝑥0) = 𝑒̅𝑒  + 𝑢𝑢� .                    (3.2) 

Vì 𝑢𝑢� ∈ −𝐸𝐸∞ và 𝜓𝜓 ∈ 𝐸𝐸∞∗ \{0𝕐𝕐∗} nên 

𝜓𝜓(𝑢𝑢�) < 0, 

do đó, từ (3.2) ta suy ra 

𝜓𝜓(𝑓𝑓(𝑥𝑥�) − 𝑓𝑓(𝑥𝑥0) − 𝑒̅𝑒 ) = 𝜓𝜓(𝑢𝑢�) < 0, 

điều này mâu thuẫn với (3.1). Vì vậy,  

𝑥𝑥0 ∈ Eff(VOP)(𝑓𝑓,𝐸𝐸).                        ∎ 

Ta xét ví dụ sau đây minh họa cho Định lý 3.1. 

Ví dụ 3.1. Cho 𝕏𝕏 = ℝ, 𝕐𝕐 = ℝ2,  𝐸𝐸 = (2,1) +
ℝ+
2 , 𝑋𝑋 = [−2, 0] và hàm 𝑓𝑓:ℝ → ℝ2 được xác định 

bởi 

𝑓𝑓(𝑥𝑥) = (𝑥𝑥, 𝑥𝑥3 + 2𝑥𝑥 − 1). 

Khi đó, 𝐸𝐸∞ = ℝ+
2 . Với  𝑥𝑥0 = −1 ∈ [−2,0], ta có  

𝑓𝑓(−1) = (−1,−4). 

Cho 𝜓𝜓 = (1,0) ∈ 𝐸𝐸∞∗ \{0𝕐𝕐∗}, với mọi 𝑥𝑥 ∈
[−2, 0] và mọi  (𝑒𝑒1, 𝑒𝑒2) ∈ (−2,−1) −ℝ+

2 , ta được 

(1,0)(𝑥𝑥, 𝑥𝑥3 + 2𝑥𝑥 − 1) − (1,0)(−1,−4) 

                = 𝑥𝑥 + 1 ≥ −1 > −2 

                ≥ (1,0)(−𝑒𝑒1,−𝑒𝑒2) = −𝑒𝑒1. 

Tức là, 

𝜓𝜓�𝑓𝑓(𝑥𝑥)� − 𝜓𝜓�𝑓𝑓(𝑥𝑥0)� ≥ 𝜓𝜓(𝑒𝑒),∀𝑥𝑥 ∈ 𝑋𝑋,∀𝑒𝑒 ∈ −𝐸𝐸. 

Áp dụng Định lý 3.1, ta được  

−1 ∈ Eff(VOP)(𝑓𝑓,𝐸𝐸). 

Định lý 3.2. Giả sử int𝐸𝐸 ≠ ∅ và 𝑓𝑓 là 𝐸𝐸-gần dưới 
giống lồi trên 𝑋𝑋. Nếu 𝑥𝑥0 ∈ Eff(VOP)(𝑓𝑓,𝐸𝐸) thì tồn 
tại 𝜓𝜓 ∈ 𝐸𝐸∞∗ \{0𝕐𝕐∗} sao cho 𝑥𝑥0 thỏa mãn điều kiện:  

𝜓𝜓�𝑓𝑓(𝑥𝑥)� − 𝜓𝜓�𝑓𝑓(𝑥𝑥0)� ≥ 𝜓𝜓(𝑒𝑒),∀𝑥𝑥 ∈ 𝑋𝑋,∀𝑒𝑒 ∈ −𝐸𝐸. 

Chứng minh. Trước tiên, từ giả thiết 

𝑥𝑥0 ∈ Eff(VOP)(𝑓𝑓,𝐸𝐸), 

ta có 
�𝑓𝑓(𝑋𝑋) − 𝑓𝑓(𝑥𝑥0)� ∩ (−𝐸𝐸) = ∅.                  

Vì int𝐸𝐸 ⊆ 𝐸𝐸 nên ta cũng được 

�𝑓𝑓(𝑋𝑋) − 𝑓𝑓(𝑥𝑥0)� ∩ (−int𝐸𝐸) = ∅.           

Điều này kết hợp với Bổ đề 2.5 (c) cho ta kết 
luận 

(𝑓𝑓(𝑋𝑋) − 𝑓𝑓(𝑥𝑥0) + 𝐸𝐸) ∩ (−int𝐸𝐸∞) = ∅.    (3.3) 
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Tiếp theo, ta chứng minh 

cone(𝑓𝑓(𝑋𝑋) − 𝑓𝑓(𝑥𝑥0) + 𝐸𝐸) ∩ (−int𝐸𝐸∞) = ∅. 

Giả sử ngược lại 

cone(𝑓𝑓(𝑋𝑋) − 𝑓𝑓(𝑥𝑥0) + 𝐸𝐸) ∩ (−int𝐸𝐸∞) ≠ ∅, 

khi đó ta tìm được 𝑢𝑢 ∈ cone(𝑓𝑓(𝑋𝑋) − 𝑓𝑓(𝑥𝑥0) +
𝐸𝐸) ∩ (−int𝐸𝐸∞) sao cho 

𝑢𝑢 = 𝜆𝜆𝜆𝜆 ∈ −int𝐸𝐸∞, 

với y ∈ 𝑓𝑓(𝑋𝑋) − 𝑓𝑓(𝑥𝑥0) + 𝐸𝐸, 𝜆𝜆 ≥ 0. Hơn nữa, vì 
0𝕐𝕐 ∉ −int𝐸𝐸∞,  ta suy ra 𝜆𝜆 > 0.  Do đó,  

𝑦𝑦 =
1
𝜆𝜆
𝑢𝑢 ∈

1
𝜆𝜆

(−int𝐸𝐸∞) ⊆ −int𝐸𝐸∞. 

Từ đó dẫn đến  

𝑦𝑦 ∈ (𝑓𝑓(𝑋𝑋) − 𝑓𝑓(𝑥𝑥0) + 𝐸𝐸) ∩ (−int𝐸𝐸∞). 

Điều này mâu thuẫn với (3.3).  

Áp dụng Bổ đề 2.4 ta được 

 clcone(𝑓𝑓(𝑋𝑋) − 𝑓𝑓(𝑥𝑥0) + 𝐸𝐸) ∩ (−int𝐸𝐸∞) = ∅. 

Mặt khác, do 𝑓𝑓 là 𝐸𝐸-gần dưới giống lồi trên 𝑋𝑋 
nên clcone(𝑓𝑓(𝑋𝑋) + 𝐸𝐸) là tập lồi, kéo theo 

clcone(𝑓𝑓(𝑋𝑋) − 𝑓𝑓(𝑥𝑥0) + 𝐸𝐸) 

cũng là một tập lồi. Hơn nữa, theo Bổ đề 2.5 (f), 
𝐸𝐸∞ là nón lồi kéo theo (−int𝐸𝐸∞) cũng là nón lồi. Áp 
dụng Bổ đề 2.2, tồn tại  𝜓𝜓 ∈ 𝕐𝕐∗\{0𝕐𝕐∗} thỏa mãn điều 
kiện: 

𝜓𝜓(𝑦𝑦) ≥ 0,∀ 𝑦𝑦 ∈ clcone(𝑓𝑓(𝑋𝑋) − 𝑓𝑓(𝑥𝑥0) + 𝐸𝐸), 
(3.4) 

và 𝜓𝜓(𝑢𝑢) ≤ 0 với mọi  𝑢𝑢 ∈ (−int𝐸𝐸∞), điều này 
dẫn đến 

𝜓𝜓(𝑢𝑢) ≥ 0, ∀ 𝑢𝑢 ∈ int𝐸𝐸∞. 

Điều này kết hợp với 𝜓𝜓 ∈ 𝕐𝕐∗\{0𝕐𝕐∗} và (2.1) cho 
ta kết luận rằng  

𝜓𝜓 ∈ 𝐸𝐸∞∗ \{0𝕐𝕐∗}. 

Cuối cùng, từ bất đẳng thức (3.4), ta được 

𝜓𝜓(𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑥𝑥0) + 𝑒̅𝑒 ) ≥ 0,∀𝑥𝑥 ∈ 𝑋𝑋,∀𝑒̅𝑒 ∈ 𝐸𝐸, 

suy ra 

𝜓𝜓�𝑓𝑓(𝑥𝑥)� − 𝜓𝜓�𝑓𝑓(𝑥𝑥0)� ≥ −𝜓𝜓(𝑒̅𝑒 ),∀𝑥𝑥 ∈ 𝑋𝑋,∀𝑒̅𝑒 ∈ 𝐸𝐸. 

Do đó, 

𝜓𝜓�𝑓𝑓(𝑥𝑥)� − 𝜓𝜓�𝑓𝑓(𝑥𝑥0)� ≥ 𝜓𝜓(e),∀𝑥𝑥 ∈ 𝑋𝑋,∀𝑒𝑒 ∈ −𝐸𝐸. 

Định lý đã được chứng minh.                               ∎ 

Ví dụ 3.2. Cho 𝕏𝕏 = ℝ, 𝕐𝕐 = ℝ2, 𝑋𝑋 = [−3, 1],  
𝐸𝐸 = {(𝑥𝑥,𝑦𝑦) ∈ ℝ2: 𝑦𝑦 > 1

4
− 𝑥𝑥} ∩ {(𝑥𝑥,𝑦𝑦) ∈ ℝ2: 𝑦𝑦 >

1
4
} và hàm 𝑓𝑓:𝑋𝑋 → ℝ2 được xác định bởi 

𝑓𝑓(𝑥𝑥) = �
(0, 𝑥𝑥) nếu  𝑥𝑥 ∈ [−3, 0],
(𝑥𝑥, 𝑥𝑥) nếu  𝑥𝑥 ∈]0,1].  

Lấy 𝑥𝑥0 = 1 ∈]0,1] thì  

𝑓𝑓(1) = (1, 1). 

Với mọi 𝜓𝜓 = (𝜓𝜓1,𝜓𝜓2) ∈ 𝐸𝐸∞∗ \{0𝕐𝕐∗}, trong đó 
𝜓𝜓1,𝜓𝜓2 ≥ 0, 𝜓𝜓1,𝜓𝜓2 không đồng thời bằng 0, và mọi 
(−𝑒𝑒1,−𝑒𝑒2) ∈ −𝐸𝐸 ta được  

(𝜓𝜓1,𝜓𝜓2)(−𝑒𝑒1,−𝑒𝑒2) = −𝜓𝜓1𝑒𝑒1 − 𝜓𝜓2𝑒𝑒2. 

Cho  𝑥𝑥� = 0 ∈ [−3, 0], ta được 

𝑓𝑓(0) = (0, 0), 

khi đó với (−𝑒̂𝑒1,−𝑒̂𝑒2) = �0,−1
2
� ∈ −𝐸𝐸 ta có 

𝜓𝜓�𝑓𝑓(0)� − 𝜓𝜓�𝑓𝑓(1)�  = −(𝜓𝜓1,𝜓𝜓2)(1, 1)     

           = −𝜓𝜓1 − 𝜓𝜓2 < (𝜓𝜓1,𝜓𝜓2) �0,−
1
2
� = −

1
2
𝜓𝜓2, 

tức là 

𝜓𝜓�𝑓𝑓(𝑥𝑥)� − 𝜓𝜓�𝑓𝑓(𝑥𝑥0)� ≥ 𝜓𝜓(𝑒𝑒)  

không thỏa mãn  với mọi 𝑥𝑥 ∈ 𝑋𝑋 và mọi 𝑒𝑒 ∈ −𝐸𝐸. 
Từ đó suy ra 

1 ∉ Eff(VOP)(𝑓𝑓,𝐸𝐸). 

Tiếp theo, các điều kiện tối ưu cho nghiệm hữu 
hiệu Benson của (VOP) tương ứng với 𝐸𝐸∞ được thể 
hiện qua các định lý sau. 

Định lý 3.3. Với 𝜓𝜓 ∈ 𝐸𝐸∞#  cho trước. Giả sử 𝑥𝑥0 ∈
𝑋𝑋 sao cho  

𝜓𝜓�𝑓𝑓(𝑥𝑥)� − 𝜓𝜓�𝑓𝑓(𝑥𝑥0)� ≥ 𝜓𝜓(𝑒𝑒),∀𝑥𝑥 ∈ 𝑋𝑋,∀𝑒𝑒 ∈ −𝐸𝐸. 

Khi đó, ta có 

𝑥𝑥0 ∈ BEff(VOP)(𝑓𝑓,𝐸𝐸∞). 

Chứng minh. Trước tiên, ta có 

 0𝕐𝕐 ∈ clcone(𝑓𝑓(𝑋𝑋) − 𝑓𝑓(𝑥𝑥0) + 𝐸𝐸) ∩ (−𝐸𝐸∞). 

Lấy phần tử bất kỳ 

𝑏𝑏 ∈ clcone(𝑓𝑓(𝑋𝑋) − 𝑓𝑓(𝑥𝑥0) + 𝐸𝐸) ∩ (−𝐸𝐸∞), 

ta chứng minh rằng 𝑏𝑏 = 0𝕐𝕐. Do 𝐸𝐸 là tập cải tiến 
ứng với nón 𝐸𝐸∞ nên ta được 

𝑏𝑏 ∈ clcone(𝑓𝑓(𝑋𝑋) − 𝑓𝑓(𝑥𝑥0) + 𝐸𝐸 + 𝐸𝐸∞) ∩ (−𝐸𝐸∞). 
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Vì 𝑏𝑏 ∈ clcone(𝑓𝑓(𝑋𝑋) − 𝑓𝑓(𝑥𝑥0) + 𝐸𝐸 + 𝐸𝐸∞) nên 
tồn tại {𝛼𝛼𝑛𝑛} ⊂ ℝ+, {𝑥𝑥𝑛𝑛} ⊂ 𝑋𝑋, {𝑒𝑒𝑛𝑛} ⊂ 𝐸𝐸 và {𝑢𝑢𝑛𝑛} ⊂
𝐸𝐸∞ sao cho  

𝛼𝛼𝑛𝑛(𝑓𝑓(𝑥𝑥𝑛𝑛) − 𝑓𝑓(𝑥𝑥0) + 𝑒𝑒𝑛𝑛 + 𝑢𝑢𝑛𝑛) → 𝑏𝑏. 

Từ giả thiết 𝜓𝜓 ∈ 𝐸𝐸∞# , ta được  

𝛼𝛼𝑛𝑛�𝜓𝜓�𝑓𝑓(𝑥𝑥𝑛𝑛)� − 𝜓𝜓�𝑓𝑓(𝑥𝑥0)� + 𝜓𝜓(𝑒𝑒𝑛𝑛) + 𝜓𝜓(𝑢𝑢𝑛𝑛)� →
𝜓𝜓(𝑏𝑏). (3.5) 

Tiếp theo, vì 

𝜓𝜓�𝑓𝑓(𝑥𝑥)� − 𝜓𝜓�𝑓𝑓(𝑥𝑥0)� ≥ 𝜓𝜓(𝑒𝑒),∀𝑥𝑥 ∈ 𝑋𝑋,∀𝑒𝑒 ∈ −𝐸𝐸. 

nên ta được 

𝜓𝜓�𝑓𝑓(𝑥𝑥𝑛𝑛)� − 𝜓𝜓�𝑓𝑓(𝑥𝑥0)� ≥ 𝜓𝜓(−𝑒𝑒𝑛𝑛). 

Do tính tuyến tính và liên tục của 𝜓𝜓, ta suy ra 

𝜓𝜓(𝑓𝑓(𝑥𝑥𝑛𝑛)) − 𝜓𝜓(𝑓𝑓(𝑥𝑥0)) + 𝜓𝜓(𝑒𝑒𝑛𝑛) ≥ 0.         (3.6) 

Hơn nữa, từ 𝜓𝜓 ∈ 𝐸𝐸∞#  và 𝑢𝑢𝑛𝑛 ∈ 𝐸𝐸∞ cho ta  

𝜓𝜓(𝑢𝑢𝑛𝑛) ≥ 0.                               (3.7) 

Kết hợp (3.5), (3.6) và (3.7), ta được  

𝜓𝜓(𝑏𝑏) ≥ 0.                                  (3.8) 

Sau cùng, vì 𝜓𝜓 ∈ 𝐸𝐸∞#  và 𝑏𝑏 ∈ −𝐸𝐸∞, ta có 

𝜓𝜓(𝑏𝑏) ≤ 0. 

Điều này cùng với (3.8) cho ta 

𝜓𝜓(𝑏𝑏) = 0, 

nên ta suy ra 𝑏𝑏 = 0𝕐𝕐 do 𝜓𝜓 ∈ 𝐸𝐸∞#  , do đó 

clcone(𝑓𝑓(𝑋𝑋) − 𝑓𝑓(𝑥𝑥0) + 𝐸𝐸) ∩ (−𝐸𝐸∞) = {0𝕐𝕐}. 

Vậy 𝑥𝑥0 ∈ BEff(VOP)(𝑓𝑓,𝐸𝐸∞).                                ∎  

Ta xét ví dụ sau đây minh họa cho việc vận dụng 
của Định lý 3.3. 

Ví dụ 3.3. Cho 𝕏𝕏 = ℝ, 𝕐𝕐 = ℝ2,  𝐸𝐸 = (2,3) +
ℝ+
2 , 𝑋𝑋 = [−1, 1] và hàm 𝑓𝑓:ℝ → ℝ2 được xác định 

bởi 

𝑓𝑓(𝑥𝑥) = (𝑥𝑥, 𝑥𝑥3 + 2𝑥𝑥 − 1). 

Khi đó, 𝐸𝐸∞ = ℝ+
2 . Với  𝑥𝑥0 = 0 ∈ [−1,1], ta có  

𝑓𝑓(0) = (0,−1). 

Lấy 𝜓𝜓 = (1,1) ∈ 𝐸𝐸∞# , với mọi 𝑥𝑥 ∈ [−1, 1] và 
mọi  (𝑒𝑒1, 𝑒𝑒2) ∈ (−2,−3) −ℝ+

2 , ta được  

(1,1)(𝑥𝑥, 𝑥𝑥3 + 2𝑥𝑥 − 1) − (1,1)(0,−1) 

                   = 𝑥𝑥3 + 3𝑥𝑥 − 1 + 1 = 𝑥𝑥3 + 3𝑥𝑥 ≥ −4 

                   > −5 ≥ (1,1)(−𝑒𝑒1,−𝑒𝑒2) = −𝑒𝑒1 − 𝑒𝑒2, 

điều đó có nghĩa là 

𝜓𝜓�𝑓𝑓(𝑥𝑥)� − 𝜓𝜓�𝑓𝑓(𝑥𝑥0)� ≥ 𝜓𝜓(𝑒𝑒),∀𝑥𝑥 ∈ 𝑋𝑋,∀𝑒𝑒 ∈ −𝐸𝐸. 

Áp dụng Định lý 3.3, ta được  

0 ∈ BEff(VOP)(𝑓𝑓,𝐸𝐸∞). 

Định lý 3.4. Cho 𝐸𝐸 là tập đóng và 𝐾𝐾 là nón đóng 
có đỉnh trong 𝕐𝕐 sao cho 𝐸𝐸 ⊆ 𝐾𝐾. Giả sử 𝐸𝐸∞ có cơ sở 
compact và 𝑓𝑓 là 𝐸𝐸-gần dưới giống lồi trên 𝑋𝑋. Nếu  
𝑥𝑥0 ∈ BEff(VOP)(𝑓𝑓,𝐸𝐸∞) thì tồn tại 𝜓𝜓 ∈ 𝐸𝐸∞#  sao cho 
𝑥𝑥0 thỏa mãn điều kiện: 

𝜓𝜓�𝑓𝑓(𝑥𝑥)� − 𝜓𝜓�𝑓𝑓(𝑥𝑥0)� ≥ 𝜓𝜓(𝑒𝑒),∀𝑥𝑥 ∈ 𝑋𝑋,∀𝑒𝑒 ∈ −𝐸𝐸. 

Chứng minh. Vì 𝑥𝑥0 ∈ BEff(VOP)(𝑓𝑓,𝐸𝐸∞) nên 

clcone(𝑓𝑓(𝑋𝑋) − 𝑓𝑓(𝑥𝑥0)} + 𝐸𝐸) ∩ (−𝐸𝐸∞) = {0𝕐𝕐}. 

Từ giả thiết 𝑓𝑓 là 𝐸𝐸-gần dưới giống lồi trên 𝑋𝑋, ta 
có tập 

clcone(𝑓𝑓(𝑋𝑋) + 𝐸𝐸) 

là lồi nên kéo theo tập 

clcone(𝑓𝑓(𝑋𝑋) − 𝑓𝑓(𝑥𝑥0) + 𝐸𝐸) 

cũng lồi.  

Mặt khác, do 𝐸𝐸 là  tập đóng và 𝐾𝐾 là nón đóng có 
đỉnh trong 𝕐𝕐 sao cho 𝐸𝐸 ⊆ 𝐾𝐾, từ Bổ đề 2.5 (f) và (g) 
ta được 𝐸𝐸∞ là nón lồi, đóng, có đỉnh. Áp dụng Bổ đề 
2.3 tồn tại  𝜓𝜓� ∈ 𝐸𝐸∞#  thỏa mãn 

𝜓𝜓� ∈ �clcone(𝑓𝑓(𝑋𝑋) − 𝑓𝑓(𝑥𝑥0) + 𝐸𝐸)�∗, 

từ đó dẫn đến 

𝜓𝜓�(𝑧𝑧) ≥ 0,∀ 𝑧𝑧 ∈ clcone(𝑓𝑓(𝑋𝑋) − 𝑓𝑓(𝑥𝑥0) + 𝐸𝐸). 

Vì  𝑓𝑓(𝑋𝑋) − 𝑓𝑓(𝑥𝑥0) + 𝐸𝐸 là tập con của  

clcone(𝑓𝑓(𝑋𝑋) − 𝑓𝑓(𝑥𝑥0) + 𝐸𝐸), 

nên ta cũng có 

𝜓𝜓�(𝑧𝑧) ≥ 0,∀ 𝑧𝑧 ∈ 𝑓𝑓(𝑋𝑋) − 𝑓𝑓(𝑥𝑥0) + 𝐸𝐸. 

Do đó, 

𝜓𝜓�(𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑥𝑥0) + 𝑒̅𝑒 ) ≥ 0,∀ 𝑥𝑥 ∈ 𝑋𝑋,∀𝑒̅𝑒 ∈ 𝐸𝐸, 

suy ra 

𝜓𝜓��𝑓𝑓(𝑥𝑥)� − 𝜓𝜓��𝑓𝑓(𝑥𝑥0)� ≥ −𝜓𝜓�(𝑒̅𝑒 ),∀ 𝑥𝑥 ∈ 𝑋𝑋,∀𝑒̅𝑒 ∈ 𝐸𝐸. 

Vì vậy, 

𝜓𝜓�𝑓𝑓(𝑥𝑥)� − 𝜓𝜓�𝑓𝑓(𝑥𝑥0)� ≥ 𝜓𝜓(𝑒𝑒),  

với mọi 𝑥𝑥 ∈ 𝑋𝑋 và mọi 𝑒𝑒 ∈ −𝐸𝐸.                                ∎ 
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Ví dụ 3.4. Cho 𝕏𝕏 = ℝ, 𝕐𝕐 = ℝ2, 𝑋𝑋 = [−1, 2], 
𝐸𝐸 = �0, 1

4
� + ℝ+

2  và hàm 𝑓𝑓:𝑋𝑋 → ℝ2 được xác định 
bởi 

𝑓𝑓(𝑥𝑥) = �
(𝑥𝑥, 0) nếu  𝑥𝑥 ∈ [−1, 0[,
(0, 𝑥𝑥) nếu  𝑥𝑥 ∈ [0, 2].  

Khi đó, 𝐸𝐸∞ = ℝ+
2  có sơ sở compact là 

𝐵𝐵 = {(𝑏𝑏1, 𝑏𝑏2): 𝑏𝑏1 + 𝑏𝑏2 = 1;  0 ≤ 𝑏𝑏1 ≤ 1}. 

Với  𝑥𝑥0 = 1 ∈ [−1, 2], ta có  

𝑓𝑓(1) = (0, 1). 

Với mọi 𝜓𝜓 = (𝜓𝜓1,𝜓𝜓2) ∈ 𝐸𝐸∞# , trong đó 𝜓𝜓1,𝜓𝜓2 > 0, 

lấy  𝑥𝑥� = 0 ∈ [−1, 2], ta cũng có 

𝑓𝑓(0) = (0, 0) 

và cho (−𝑒̂𝑒1,−𝑒̂𝑒2) = �0,−3
4
� ∈ −𝐸𝐸 ta có 

    𝜓𝜓�𝑓𝑓(0)� − 𝜓𝜓�𝑓𝑓(1)� = 0 − (𝜓𝜓1,𝜓𝜓2)(0,1) 

             = −𝜓𝜓2 < (𝜓𝜓1,𝜓𝜓2) �0,−
3
4
� = −

3
4
𝜓𝜓2, 

điều đó có nghĩa là bất đẳng thức  

𝜓𝜓�𝑓𝑓(𝑥𝑥)� − 𝜓𝜓�𝑓𝑓(𝑥𝑥0)� ≥ 𝜓𝜓(𝑒𝑒)  

không thỏa với mọi 𝑥𝑥 ∈ 𝑋𝑋 và mọi 𝑒𝑒 ∈ −𝐸𝐸. Do 
đó,  

1 ∉ BEff(VOP)(𝑓𝑓,𝐸𝐸∞). 

Nhận xét 3.1. Trong Zhou et al. (2019), các tác 
giả đã vận dụng một dạng mở rộng của hàm khoảng 

cách định hướng để khảo sát điều kiện tối ưu cho 
nghiệm hữu hiệu Pareto và nghiệm hữu hiệu Pareto 
yếu của bài toán tối ưu tập có ràng buộc tương ứng 
với tập cải tiến. Hơn nữa, với phương pháp vô 
hướng hóa tuyến tính và nhân tử Lagrange, Zhou et 
al. (2025) cũng đã thiết lập được các điều kiện tối 
ưu cho nghiệm hữu hiệu Benson của bài toán cân 
bằng đa trị và áp dụng vào bài toán tối ưu tập tương 
ứng với nón lùi xa của một tập cải tiến trong không 
gian vector tôpô lồi địa phương. Bên cạnh nghiệm 
hữu hiệu Benson cho bài toán tối ưu tất định, gần 
đây Anh et al. (2025) đã xem xét điều kiện tối ưu và 
tính ổn định cho nghiệm hữu hiệu Benson vững của 
bài toán tối ưu có yếu tố không chắc chắn tương ứng 
với tập free disposal. Từ những quan sát trên, chúng 
ta có thể thấy rằng kết quả đạt được trong nghiên 
cứu này có thể được xem là giải quyết được phần 
nào cho khoảng trống nghiên cứu của các công trình 
đã có về điều kiện tối ưu cho nghiệm hữu hiệu 
Benson của bài toán tối ưu vector ứng với nón lùi xa 
của một tập bất kỳ. 

4. KẾT LUẬN 

Bài báo được thực hiện đã nghiên cứu điều kiện 
cần và đủ tối ưu của nghiệm hữu hiệu Pareto và 
nghiệm hữu hiệu Benson của bài toán tối ưu dựa trên 
các cấu trúc trội và nón lùi xa của một tập bất kỳ. 
Các kết quả đạt được trong nghiên cứu này là mới 
và khác với các công trình đã có. Hơn nữa, các kỹ 
thuật và cách tiếp cận được trình bày trong bài báo 
này, với những điều chỉnh phù hợp, có khả năng vận 
dụng thành công trong việc khảo sát điều kiện tối ưu 
cho các dạng nghiệm hữu hiệu khác nhau của các 
mô hình tối ưu vector. 

TÀI LIỆU THAM KHẢO (REFERENCES) 

Andreani, R., Haeser, G., & Martínez, J. M. (2011). 
On sequential optimality conditions for smooth 
constrained optimization. Optimization, 60(5), 
627-641. 
https://doi.org/10.1080/02331930903578700 

Anh, L. Q., Danh, N. H., Duoc, P. T., & Tam, T. N. 
(2021). Qualitative properties of solutions to set 
optimization problems. Computational and 
Applied Mathematics, 40(2), 1-18. 
https://doi.org/10.1007/s40314-021-01458-x 

Anh, L. Q., Anh, N. T., Duoc, P. T, Khanh, L. T. V., 
& Thu, P. T. A. (2022). The connectedness of 
weakly and strongly efficient solution sets of 
nonconvex vector equilibrium problems. Applied 
Set-Valued Analysis Optimization, 4, 109-127. 
https://doi.org/10.23952/asvao.4.2022.1.08 

Anh, L. Q., Duoc, P. T., & Thuy, V. T. M. (2023). 
Existence and stability to vector optimization 

problems via improvement sets. Journal of 
Applied and Numerical Optimization, 5(2), 219–
235. 
https://doi.org/10.23952/jano.5.2023.2.03 

Anh, L. Q., Thuy, V. T. M., & Zhao, X. (2025). 
Qualitative properties of robust Benson efficient 
solutions of uncertain vector optimization 
problems. Journal of Optimization Theory and 
Applications, 205(1), 1-37. 
https://doi.org/10.1007/s10957-025-02638-z 

Benson, H. P. (1979). An improved definition of 
proper efficiency for vector maximization with 
respect to cones. Journal of Mathematical 
Analysis and Applications, 71(1), 232-241.  
https://doi.org/10.1016/0022-247X(79)90226-9 

Borwein, J. (1977). Proper efficient points for 
maximizations with respect to cones. SIAM 
Journal on Control and Optimization, 15(1), 57-

https://doi.org/10.1080/02331930903578700
https://doi.org/10.23952/jano.5.2023.2.03
https://doi.org/10.1016/0022-247X(79)90226-9


Tạp chí Khoa học Đại học Cần Thơ   Tập 61, Số 5A (2025): 73-82 

81 

63.  
https://doi.org/10.1137/0315004 

Dempe, S., Dutta, J., & Mordukhovich, B. S. (2007). 
New necessary optimality conditions in 
optimistic bilevel programming. Optimization, 
56(5-6), 577-604. 
https://doi.org/10.1080/02331930701617551 

Edgeworth, F. Y. (1881). Mathematical Psychics: An 
Essay on the Application of Mathematics to the 
Moral Sciences. C. Kegan Paul & Co., London. 

Ehrgott, M. (2005). Multicriteria Optimization, Vol. 
491. Springer, Berlin. 
https://doi.org/10.1007/3-540-27659-9 

Eichfelder, G., & Jahn, J. (2011). Vector 
Optimization Problems and Their Solution 
Concepts. In: Ansari, Q., & Yao, J. C. (eds) 
Recent Developments in Vector Optimization 
(pp. 1-27). Springer, Berlin.  
https://doi.org/10.1007/978-3-642-21114-0_1 

Fan, K. (1972). A minimax inequality and 
applications. Inequalities, 3, 103-113. 

Geoffrion, A. M. (1968). Proper efficiency and the 
theory of vector maximization. Journal of 
Mathematical Analysis and Applications,  22(3), 
618-630. 
https://doi.org/10.1016/0022-247X(68)90201-1 

Gutiérrez, C., Jiménez, B., & Novo, V. (2012). 
Improvement sets and vector optimization, 
European Journal of Operational Research, 
223(2), 304-311. 
https://doi.org/10.1016/j.ejor.2012.05.050 

Gutiérrez, C., López, R., & Novo, V. (2014). 
Existence and boundedness of solutions in 
infinite-dimensional vector optimization 
problems. Journal of Optimization Theory and 
Applications, 162, 515-547. 
https://doi.org/10.1007/s10957-014-0541-7 

Han, Y. (2023). Density and connectedness of 
optimal points with respect to improvement sets. 
Optimization, 72(4), 979-1008. 
https://doi.org/10.1080/02331934.2021.2009825 

Han, Y., & Zhao, K. Q. (2023). Stability of optimal 
points with respect to improvement sets. Journal 
of Optimization Theory and Applications, 199(3), 
904-930. 
https://doi.org/10.1007/s10957-023-02308-y 

Henig, M. I. (1982). Proper efficiency with respect to 
cones. Journal of Optimization Theory and 
Applications, 36(3), 387-407. 
https://doi.org/10.1007/BF00934353  

Hirschberger, M. (2005). Connectedness of efficient 
points in convex and convex 
 transformable vector optimization. Optimization, 
54(3), 283-304. 
https://doi.org/10.1080/02331930500096 270 

Jahn, J. (2011). Vector Optimization. Springer, 
Berlin. 
https://doi.org/10.1007/978-3-642-17005-8  

Khan, A. A., Tammer, C., & Zălinescu, C. (2015). 
Set-Valued Optimization. Springer, Berlin. 
https://doi.org/10.1007/978-3-642-54265-7  

Kim, D. S., Mordukhovich, B. S., Phạm, T. S., & 
Tuyen, N. V. (2021). Existence of efficient and 
properly efficient solutions to problems of 
constrained vector optimization. Mathematical 
Programming, 190(1), 259-283. 
https://doi.org/10.1007/s10107-020-01532-y 

Kapoor, S., Lalitha, C. S. (2022). Continuity and 
closedness of constraint and solution set 
mappings in unified parametric semi-infinite 
vector optimization. Journal of Mathematical 
Analysis and Applications, 506(2), 125648. 
https://doi.org/10.1016/j.jmaa.2021.125648 

Luc, D. T. (1989). Theory of Vector Optimization. 
Springer, Berlin. 
https://doi.org/10.1007/978-3-642-50280-4  

Lucchetti, R. E., & Miglierina, E. (2004). Stability 
for convex vector optimization 
problems. Optimization, 53(5-6), 517-528. 
https://doi.org/10.1080/02331930412331327166 

Maeda, T. (2012). On optimization problems with 
set-valued objective maps: existence and 
optimality. Journal of Optimization Theory and 
Applications, 153, 263-279. 
https://doi.org/10.1007/s10957-011-9952-x 

Maggioni, F., & Wallace, S. W. (2012). Analyzing 
the quality of the expected value solution in 
stochastic programming. Annals of Operations 
Research, 200, 37-54. 
https://doi.org/10.1007/s10479-010-0807-x 

Mordukhovich, B. S. (2006). Variational Analysis 
and Generalized Differentiation II:Applications. 
Springer, Berlin. 
https://doi.org/10.1007/3-540-31246-3 

Muu, L., & Oettli, W. (1992). Convergence of an 
adaptive penalty scheme for finding constrained 
equilibria. Nonlinear Analysis: Theory, Methods 
& Applications, 18(12), 1159-1166. 
https://doi.org/10.1016/0362-546X(92)90159-C 

Pareto, V. (1906). L'ofelimità nei cicli non chiusi. 
Giornale degli Economisti, 33, 15-30. 

Peng, Z. Y., Peng, J. W., Long, X. J., & Yao, J. C. 
(2018). On the stability of solutions for 
semiinfinite vector optimization problems. 
Journal of Global Optimization, 70(1), 55-69. 
https://doi.org/10.1007/s10898-017-0553-6 

Peng, Z. Y., Chen, X. J., Zhao, Y. B., & Li, X. B. 
(2023). Painlevé-Kuratowski convergence of 
minimal solutions for set-valued optimization 
problems via improvement sets. Journal of 

https://doi.org/10.1137/0315004
https://doi.org/10.1080/02331930701617551
https://doi.org/10.1016/0022-247X(68)90201-1
https://doi.org/10.1016/j.ejor.2012.05.050
https://doi.org/10.1007/s10957-014-0541-7
https://doi.org/10.1080/02331934.2021.2009825
https://doi.org/10.1007/BF00934353
https://doi.org/10.1080/02331930500096%20270
https://doi.org/10.1007/978-3-642-17005-8
https://doi.org/10.1007/978-3-642-54265-7
https://doi.org/10.1007/s10107-020-01532-y
https://doi.org/10.1007/978-3-642-50280-4
https://doi.org/10.1080/02331930412331327166
https://doi.org/10.1007/s10957-011-9952-x
https://doi.org/10.1016/0362-546X(92)90159-C


Tạp chí Khoa học Đại học Cần Thơ   Tập 61, Số 5A (2025): 73-82 

82 

Global Optimization, 87(2), 759-781. 
https://doi.org/10.1007/s10898-022-01166-8 

Peng, Z. Y., Shao, C. Y., Zeng, Y., & Xiao, Y. B. 
(2024). Painlevé–Kuratowski stability of 
approximate solution sets for perturbed set 
optimization problems under general ordering 
sets by recession cone. Taiwanese Journal of 
Mathematics, 28(3), 611-636. 
https://doi.org/10.11650/tjm/240104  

Tanaka, T., & Kuroiwa, D. (1993). The convexity of 
A and B assures intA+B= int(A+ B). Applied 
Mathematics Letters, 6(1), 83-86. 
https://doi.org/10.1016/0893-9659(93)90154-F 

Tanino, T. (1988). Stability and sensitivity analysis 
in convex vector optimization. SIAM Journal on 
Control and Optimization, 26(3), 521-536. 
https://doi.org/10.1137/0326031 

Ustun, D., Carbas, S., & Toktas, A. (2021). Multi-
objective optimization of engineering design 
problems through Pareto-Based bat algorithm. 
In: Dey, N., & Rajinikanth, V. (eds) Applications 
of Bat Algorithm and its Variants. Springer, 
Singapore.  
https://doi.org/10.1007/978-981-15-5097-3_2 

Wang, Q., Jin, J., & Zhai, Y. (2024). Higher-order 
optimality conditions of robust Benson proper 
efficient solutions in uncertain vector 
optimization problems. Optimization Letters, 
18(6), 1475-1490. 
https://doi.org/10.1007/s11590-023-02061-1 

Wei, H. Z., Chen, C.R., & Li, S. J. (2018). 
Characterizations for optimality conditions of 
general robust optimization problems. Journal of 
Optimization Theory and Applications, 177, 835-
856. 
https://doi.org/10.1007/s10957-018-1256-y 

Zhao, K., Chen, G., & Yang, X. (2014). 
Approximate proper efficiency in vector 
optimization. Optimization, 64(8), 1777-1793. 
https://doi.org/10.1080/02331934.2014.979818 

Zhou, Z., Chen, W., & Yang, X. (2019). 
Scalarizations and optimality of constrained set-
valued optimization using improvement sets and 
image space analysis. Journal of Optimization 
Theory and Applications, 183, 944-962. 
https://doi.org/10.1007/s10957-019-01554-3 

Zhou, Z. A., & Kuang, M. (2023). Scalarization and 
optimality conditions of E-globally proper 
efficient solution for set-valued equilibrium 
problems. Asia Pacific Journal of Operational 
Research, 40(02), 2250009. 
https://doi.org/10.1142/S0217595922500099 

Zhou, Z., Liang, K., & Ansari, Q. H. (2025). 
Optimality conditions for Benson proper 
efficiency of set-valued equilibrium problems. 
Mathematical Methods of Operations Research, 
101, 111–134.  
https://doi.org/10.1007/s00186-025-00887-2 

 

https://doi.org/10.1007/s10898-022-01166-8
https://doi.org/10.11650/tjm/240104
https://doi.org/10.1016/0893-9659(93)90154-F
https://doi.org/10.1137/0326031
https://doi.org/10.1007/978-981-15-5097-3_2
https://doi.org/10.1080/02331934.2014.979818
https://doi.org/10.1007/s10957-019-01554-3
https://doi.org/10.1142/S0217595922500099
https://doi.org/10.1007/s00186-025-00887-2

	1. GIỚI THIỆU
	2. KIẾN THỨC CHUẨN BỊ
	3. ĐIỀU KIỆN TỐI ƯU CHO NGHIỆM HỮU HIỆU CỦA BÀI TOÁN TỐI ƯU VECTOR
	4. KẾT LUẬN

