
Tạp chí Khoa học Đại học Cần Thơ   Tập 61, Số 3A (2025): 11-23 

11 

 
DOI:10.22144/ctujos.2025.075 

ỨNG DỤNG MÔ HÌNH HỌC MÁY DỰ BÁO CÔNG SUẤT PHÁT ĐIỆN GIÓ 
Huỳnh Văn Vạn1, Vũ Phan Tú2, 3* và Nguyễn Văn Minh Nhựt1 
1Khoa Điện - Điện tử, Trường Đại học Tôn Đức Thắng, Việt Nam 
2Bộ môn Hệ thống điện, Trường Đại học Bách Khoa Thành phố Hồ Chí Minh, Việt Nam 
3Đại học Quốc gia Thành phố Hồ Chí Minh, Việt Nam 
*Tác giả liên hệ (Corresponding author): vptu@hcmut.edu.vn 

Thông tin chung (Article Information) 
 
Nhận bài (Received): 17/02/2025 
Sửa bài (Revised): 15/04/2025 
Duyệt đăng (Accepted): 30/05/2025 
 
Title: Forecasting the power generation 
of wind turbine output using machine 
learning 
 
Author: Huynh Van Van1, Vu Phan  
Tu2,3* and Nguyen Van Minh Nhut1 
 
Affiliation(s): 1Faculty of Electrical and 
Electronics Engineering, Ton Duc 
Thang University, Viet Nam; 
2Department of Electrical Systems, Ho 
Chi Minh City University of 
Technology, Viet Nam; 3Vietnam 
National University Ho Chi Minh City, 
Viet Nam 
 

TÓM TẮT 
Ngành điện gió được phát triển nhằm đáp ứng nhu cầu điện năng và 
giảm phụ thuộc vào năng lượng hóa thạch. Tuy nhiên, sự biến động 
nguồn năng lượng gió gây khó khăn cho vận hành và điều phối lưới 
điện dẫn đến tình trạng phát điện dư thừa hoặc thiếu hụt công suất 
vào từng thời điểm khác nhau. Nghiên cứu này được thực hiện nhằm 
nâng cao độ chính xác trong dự báo công suất phát điện gió, giúp tối 
ưu hóa vận hành và tích hợp năng lượng gió vào hệ thống điện. 
Phương pháp được sử dụng là mô hình mạng hồi quy Perceptron đa 
tầng (MLP Regression) và được lựa chọn để thực hiện nhiệm vụ dự 
báo công suất phát điện gió. Tập dữ liệu được sử dụng trong nghiên 
cứu bao gồm các biến đầu vào như nhiệt độ môi trường, tốc độ và 
hướng gió; đầu ra là công suất phát của tuabin gió. Toàn bộ quá trình 
xây dựng và đánh giá mô hình được triển khai bằng ngôn ngữ lập trình 
Python. Kết quả ghiên cứu cho thấy tiềm năng của trí tuệ nhân tạo (AI 
- Artificial Intelligence) và học máy trong tối ưu hóa vận hành điện 
gió, góp phần khai thác hiệu quả tài nguyên gió, hỗ trợ điều phối lưới 
điện hiệu quả và thúc đẩy hệ thống điện bền vững. 
Từ khóa: Dự báo công suất điện gió, điện gió, mô hình học máy, năng 
lượng tái tạo 
ABSTRACT 
The development of the wind power sector aims to meet energy demands 
and reduce dependency on fossil fuels. However, the variability of wind 
energy sources poses challenges for grid operation and dispatch, 
leading to periods of surplus generation or insufficient power supply at 
different times. This study aims to enhance the accuracy of wind energy 
forecasts to optimize operations and integrate wind energy into the 
power grid. The applied method is the Multilayer Perceptron (MLP) 
regression model, which was selected for the task of wind power 
forecasting. The dataset used in the study includes input variables such 
as ambient temperature, wind speed, and wind direction, while the 
output corresponds to the power generated by the wind turbine. The 
model development and evaluation process is implemented using the 
Python programming language. The research highlights the potential of 
AI (Artificial Intelligence) and ML in optimizing wind power operations, 
efficiently utilizing wind resources, supporting effective grid dispatch, 
and promoting a sustainable power system. 

Keywords: Machine learning, renewable energy, wind power, wind 
power forecasting 
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1. GIỚI THIỆU 

Với nguồn tài nguyên gió dồi dào quanh năm, 
điện gió trở thành một giải pháp hiệu quả, đầy tiềm 
năng cho hệ thống năng lượng quốc gia. Việc phát 
triển các trang trại điện gió, tận dụng điều kiện gió 
thuận lợi, không chỉ giúp giảm phát thải khí nhà kính 
mà còn góp phần giảm sự phụ thuộc vào nhiên liệu 
hóa thạch truyền thống. Mặc dù sở hữu nhiều lợi thế 
so với các nguồn năng lượng hóa thạch, điện gió vẫn 
gặp phải những thách thức lớn trong khai thác hiệu 
quả và tích hợp vào lưới điện do tính biến động, 
không liên tục, khó dự đoán và những hạn chế trong 
việc công suất điện gió thay đổi liên tục. Do đó, việc 
phát triển một mô hình dự báo công suất phát điện 
gió có độ chính xác cao là điều cần thiết nhằm nâng 
cao độ tin cậy và tính ổn định của hệ thống điện gió. 

Hiện nay, các phương pháp dự báo công suất gió 
chủ yếu được chia thành bốn nhóm chính: mô hình 
dựa trên vật lý, mô hình thống kê, mô hình trí tuệ 
nhân tạo (AI - Artificial Intelligence) và mô hình lai 
(Yang et al., 2023; Hao et al., 2024). Tuy nhiên, mỗi 
phương pháp, cách tiếp cận đều có những ưu điểm 

và hạn chế riêng trong ứng dụng thực tế được trình 
bày trong Bảng 1. Công suất phát điện gió phụ thuộc 
vào các yếu tố thời tiết như: vận tốc gió, hướng gió 
và các điều kiện khí hậu, môi trường khác nhau. Sự 
biến động của các yếu tố này dẫn đến sự biến động 
công suất phát điện gió, gây khó khăn cho vận hành 
và điều phối lưới điện. Điều này nhấn mạnh sự cần 
thiết của dự báo chính xác để đảm bảo tối ưu vận 
hành lưới điện cũng như vận hành hệ thống điện ổn 
định. Ở nhiều nghiên cứu, việc đánh giá tác động 
của các yếu tố môi trường đã được thực hiện, đặc 
biệt là vận tốc gió đến hiệu suất tuabin trong quá 
trình phát điện, từ đó đề xuất các giải pháp, các mô 
hình dự báo nhằm giảm thiểu ảnh hưởng của những 
biến động này (Azimi et al., 2016; Pandit et al., 
2023). Bên cạnh đó, việc phân tích và so sánh các 
phương pháp trích xuất dữ liệu, ước lượng vận tốc 
gió giúp tiếp cận hiệu quả đến giảm sai số kết quả 
dự báo (Naik et al., 2018; Wang et al., 2021). Tuy 
nhiên, một thách thức lớn trong dự báo công suất gió 
là nguồn dữ liệu thu thập từ hệ thống SCADA 
(Supervisory Control and Data Acquisition) thường 
không đầy đủ do lỗi cảm biến, gián đoạn tín hiệu 
truyền hoặc điều kiện vận hành không ổn định. 

Bảng 1. Đánh giá các phương pháp dự báo năng lượng gió 
Mô hình Phương pháp Ưu điểm Nhược điểm 
Mô hình 
dựa trên 

vật lý 

Mô hình Dự báo Thời tiết Số 
(NWP - Numerical Weather 

Prediction) (Zhang et al., 
2020) 

Độ tin cậy cao, hiệu quả trong 
dự báo dài hạn từ vài giờ đến 

vài tuần. 

Khó triển khai do yêu cầu tính 
toán phức tạp, phụ thuộc nhiều 
vào chất lượng dữ liệu đầu vào. 

Mô hình 
thống kê 

ARMA (AutoRegressive 
Moving Average) (Tian et al., 

2018) 

Thiết kế đơn giản, hiệu quả tính 
toán cao, tận dụng tốt dữ liệu 
lịch sử để nhận diện quy luật 

biến động. 

Phụ thuộc vào bộ dữ liệu ổn 
định, không phù hợp với dữ liệu 

phi tuyến tính, độ chính xác 
giảm khi tăng khoảng thời gian 

dự báo. 

Mô hình 
AI 

Học máy (ML - Machine 
Learning) (Mohd et al., 2023) 

Học sâu (DL - Deep 
Learning) (Lin et al., 2020) 

Khả năng học tập các quy luật 
phi tuyến tính giúp cải thiện độ 
chính xác dự báo, tự động hóa 
quy trình, phù hợp với dữ liệu 

lớn. 

Triển khai phức tạp, yêu cầu tài 
nguyên tính toán lớn, khó khăn 
với hệ thống có năng lực xử lý 

hạn chế. 

Mô hình 
lai 

Hybrid Models (Ozkan et al., 
2015; Kalpana et al., 2023) 

Kết hợp các ưu điểm của từng 
phương pháp, cải thiện độ chính 
xác dự báo, khả năng thích ứng 

với nhiều loại dữ liệu khác 
nhau. 

Đòi hỏi kỹ thuật triển khai phức 
tạp, yêu cầu cao về tài nguyên 
tính toán và dữ liệu huấn luyện 

chất lượng cao. 
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Khi một hoặc nhiều biến đầu vào có giá trị 
khuyết, mô hình dự báo không thể nắm bắt đầy đủ 
mối quan hệ giữa các yếu tố này ảnh hưởng đến công 
suất, làm giảm độ chính xác của mô hình dự báo 
(Fan et al., 2024). Ngoài ra, dữ liệu sai lệch làm gia 
tăng sai số, gây khó khăn trong quản lý và vận hành 
hệ thống điện. Điều này đặc biệt quan trọng trong 
các hệ thống điện có tỷ trọng cao từ năng lượng tái 
tạo như điện gió, nơi mà độ chính xác của dự báo 
đóng vai trò quyết định trong việc đảm bảo ổn định 
và hiệu quả kinh tế. Do đó, việc xử lý dữ liệu ngoại 
lai bằng các phương pháp xử lý dữ liệu hoặc sử dụng 
các mô hình dự báo mạnh mẽ là yếu tố quan trọng 
giúp giảm thiểu rủi ro và tối ưu hóa việc tích hợp 
điện gió vào lưới điện (Liang et al., 2023).     

Nghiên cứu này được thực hiện nhằm hướng đến 
việc phát triển một mô hình dự báo công suất phát 
điện gió kết hợp các kỹ thuật tiền xử lý dữ liệu tiên 
tiến nhằm giải quyết những nhược điểm và thách 
thức hiện tại (Tuncar et al., 2024; Yang et al., 2025). 
Kết quả các nghiên cứu về học sâu đã chỉ ra rằng 
phương pháp hồi quy Perceptron đa tầng (MLP - 
Multi-Layer Perceptron) đặc biệt hiệu quả trong 
việc nhận diện các mối quan hệ phi tuyến giữa biến 
đầu vào và đầu ra, phù hợp với tính chất không ổn 
định của tốc độ gió (Sireesha et al., 2024). Để nâng 
cao hiệu suất dự báo, đảm bảo độ tin cậy và độ chính 
xác cao hơn, mô hình lai CNN-Transformer-MLP 
(Bashir et al., 2025) đã được đề xuất trong  
nghiên cứu. 

Trong bài nghiên cứu, mô hình dự báo ngắn hạn 
công suất điện gió kết hợp các phương pháp xử lý 
dữ liệu hiện đại đã được đề xuất nhằm cải thiện độ 
chính xác kết quả dự báo. Mô hình tận dụng khả 
năng xử lý dữ liệu nâng cao của phương pháp hồi 
quy đa tầng MLP, hướng đến việc xây dựng một mô 
hình dự báo có độ chính xác cao hơn. Những đóng 
góp của bài báo như sau:    

− Mô hình học máy trong dự báo ngắn hạn 
công suất phát điện gió được áp dụng thành công. 

− Kết quả dự báo công suất gió đạt sai số dưới 
5% so với dữ liệu thực tế thu thập được từ các dự án 
điện gió. 

− Phương pháp MLP tuy đã được áp dụng 
trong các nghiên cứu trước, nghiên cứu này sẽ đưa 
ra một cách tiếp cận mới, kết hợp các kỹ thuật tiền 
xử lý dữ liệu và tối ưu hóa, giúp nâng cao độ chính 
xác trong dự báo công suất điện gió. Cách tiếp cận 
này không chỉ cải thiện hiệu quả của mô hình mà 
còn hỗ trợ tích hợp điện gió vào lưới điện một cách 
hiệu quả hơn, mang lại kết quả dự báo có độ tin cậy 
cao hơn. 

Quá trình phát triển và triển khai mô hình được 
thực hiện trên nền tảng Google Colaboratory và lập 
trình bằng ngôn ngữ Python. Điều này cho phép sử 
dụng các thư viện và công cụ mạnh mẽ trong phân 
tích dữ liệu và học máy. 

2. PHƯƠNG PHÁP NGHIÊN CỨU 
2.1. Tổng quan mô hình dự báo 

Trong lĩnh vực dự báo công suất điện gió, trí tuệ 
nhân tạo (AI), đặc biệt là học máy (ML) đang nhận 
được sự quan tâm ngày càng lớn và được ứng dụng 
rộng rãi. Mô hình học máy cho phép các mô hình dự 
báo học hỏi và thích ứng thông qua phân tích dữ liệu 
thay vì chỉ dựa trên các quy tắc được xác định trước. 
Cách tiếp cận này giúp khám phá các quy luật phức 
tạp trong tập dữ liệu lớn, bao gồm dữ liệu thời tiết 
và dữ liệu SCADA từ tuabin gió, từ đó nâng cao độ 
chính xác của dự báo. Quy trình triển khai thường 
bao gồm nhiều bước, bao gồm: xử lý dữ liệu, trích 
xuất tính năng và phân loại dữ liệu như được trình 
bày ở Hình 1. Mục tiêu được xác định là phát triển 
mô hình dự báo với độ chính xác và độ tin cậy cao. 

 
Hình 1. Sơ đồ tổng quát về dự báo phát điện gió 
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Dữ liệu được thu thập từ hệ thống SCADA của 
tuabin gió thường chứa nhiễu, giá trị khuyết và sai 
lệch do lỗi cảm biến hoặc điều chỉnh công suất khi 
dư thừa điện gió. Do đó, việc tiền xử lý dữ liệu đóng 
vai trò quan trọng nhằm nâng cao chất lượng đầu 
vào và tối ưu hóa hiệu suất của mô hình dự báo. 

Tiền xử lý dữ liệu (Preprocessing): Đây là 
bước quan trọng giúp cải thiện chất lượng dữ liệu 
đầu vào: 

− Xử lý dữ liệu khuyết: Các giá trị bị khuyết 
trong tập dữ liệu từ hệ thống SCADA được giải 
quyết bằng cách tính toán để xác định giá trị hợp lý. 

− Loại bỏ dữ liệu sai lệch: Các giá trị sai lệch 
(do lỗi cảm biến hoặc điều chỉnh công suất khi dư 
thừa điện gió) được loại bỏ nhằm giảm nhiễu và 
nâng cao độ chính xác dự báo. 

Lựa chọn đặc trưng: Hệ thống SCADA ghi 
nhận nhiều thông số dư thừa, ảnh hưởng đến hiệu 
quả học máy. Việc lựa chọn đặc trưng có tương quan 
cao giúp giảm chiều dữ liệu, tăng tốc độ tính toán và 
nâng cao khả năng tổng quát hóa của mô hình. 

Phân cụm dữ liệu: Nhóm các mẫu dữ liệu có 
đặc điểm tương đồng giúp xây dựng các mô hình dự 
báo chuyên biệt, tối ưu hóa hiệu suất và đảm bảo độ 
chính xác cao hơn cho từng điều kiện vận hành của 
tuabin gió. 

Chia dữ liệu: Để xây dựng một mô hình có khả 
năng tổng quát hóa tốt, tập dữ liệu đầy đủ thường 
được chia thành ba phần chính: 

− Tập huấn luyện: dùng để huấn luyện mô 
hình, giúp nó học quy luật và mối quan hệ trong dữ 
liệu. 

− Tập kiểm định: dùng để tinh chỉnh siêu tham 
số, đánh giá mô hình trong quá trình huấn luyện mà 
không sử dụng tập kiểm tra. 

− Tập kiểm tra: dùng để đánh giá cuối cùng, 
đảm bảo mô hình có khả năng tổng quát tốt với dữ 
liệu chưa thấy trước. 

Phân loại dữ liệu: Sau khi phân cụm, mô hình 
phân loại sẽ gán nhãn cho các điểm dữ liệu mới, giúp 
cải thiện độ chính xác của dự báo. 

Lựa chọn và huấn luyện mô hình: Các thuật 
toán khác nhau được đánh giá để lựa chọn mô hình 
tối ưu, kết hợp với tinh chỉnh siêu tham số để đảm 
bảo hiệu suất cao nhất. 

Kiểm tra và đánh giá mô hình: Hiệu suất của 
mô hình được kiểm tra trên tập dữ liệu kiểm tra. 
Đồng thời, việc thêm một số mức nhiễu vào dữ liệu 

giúp đánh giá khả năng dự đoán của mô hình với các 
dữ liệu không hoàn hảo. 

2.2. Xử lý dữ liệu khuyết 

Sự xuất hiện của giá trị khuyết trong tập dữ liệu 
đầu vào của mô hình dự báo công suất điện gió làm 
tăng độ phức tạp của quá trình khai thác dữ liệu. Để 
giải quyết vấn đề này một cách hiệu quả, việc ứng 
dụng mô hình mạng thần kinh nhân tạo (Track-
Removed AutoEncoder (TRAE)) đã được thực hiện. 
Phương pháp này tái cấu trúc động kiến trúc của các 
nơ-ron ẩn dựa trên nền tảng AutoEncoder (AE) 
truyền thống (Xiaochen et al., 2019). 

Cụ thể, các giá trị dữ liệu khuyết (Hình 2)được 
đưa vào quá trình huấn luyện mạng để tối ưu hóa các 
tham số của mô hình. Trong quá trình tối ưu hóa các 
giá trị bị khuyết được cập nhật thông qua hàm tổn 
thất của TRAE (Hình 3). Mô hình giúp sử dụng dữ 
liệu một cách toàn diện hơn thay vì chỉ dựa trên các 
giá trị đã biết. Khi quá trình tối ưu tiến dần đến hội 
tụ, sai số ước lượng của giá trị khuyết giảm dần, giúp 
cải thiện độ chính xác của mô hình và chất lượng nội 
suy giá trị. 

 
Hình 2. Giá trị khuyết trong tập dữ liệu 

 
Hình 3. Quy trình xác định giá trị khuyết với 

mạng thần kinh TRAE và thuật toán SGD 

Giả sử ta có một tập dữ liệu ban đầu m nX R ×∈
trong đó: 

− m: là số lượng dữ liệu đầu vào (ví dụ: số giờ 
đo gió), 

− n: là số đặc trưng của dữ liệu (ví dụ: tốc độ 
gió, công suất phát, nhiệt độ, áp suất, v.v.). 

Định nghĩa hai tập dữ liệu con obsX và missX như 
sau (Xiaochen et al., 2019):  
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{( ) | }ib is jo jX x X x NaN∈= ≠  (1) 

{( ) | }m ss ij ji iX x X x NaN= ∈ =  (2) 

Bước 1: Khởi tạo tham số mô hình TRAE 

Tham số mô hình TRAE bao gồm: trọng số (1)W
(trọng số liên kết lớp đầu vào với lớp ẩn), (2)W            
(trọng số liên kết lớp ẩn với lớp đầu ra), (1)b ngưỡng 
kích hoạt lớp ẩn và (2)b ngưỡng kích hoạt của lớp 
đầu ra (Xiaochen et al., 2019; Tian et al., 2025) 
(Hình 4). 

 
Hình 4. Cấu trúc mạng thần kinh TRAE 

Hàm giá trị lớp ẩn (Xiaochen et al., 2019): 

( )(1) ( ) (1)th f w x b= +  (3) 

Hàm giá trị đầu ra (Xiaochen et al., 2019): 

( )( ) (2) (2)ty g w h b= +  (4) 

Trong đó: ( ), ( )f g• • là hàm kích hoạt (ví dụ: 

ReLU, Sigmoid), ( )ty là giá trị đầu ra mô hình 
TRAE. 

Bước 2: Xây dựng vector đầu vào 

Trong quá trình huấn luyện mô hình TRAE, tập 
dữ liệu đầu vào bao gồm cả các giá trị quan sát được 
và các giá trị bị khuyết. Tại vòng lặp t, vector đầu 
vào được xây dựng như sau (Xiaochen et al., 2019): 

( )
( 1)

,
ˆ ,

i obst
t

m miss

x i X
X

x m X−

∈
=  ∈

 (5) 

Trong đó: obsX là tập hợp các giá trị quan sát 
được, giữ nguyên trong suốt quá trình huấn luyện. 

missX  là tập hợp các giá trị khuyết, được thay thế 

bằng giá trị dự đoán từ vòng lặp trước đó ( 1)ˆ t
mx − . 

Ban đầu, các giá trị khuyết trong tập dữ liệu được 
khởi tạo bằng giá trị trung bình của các quan sát sẵn 
có. Giá trị khuyết (0)ˆmx được tính theo công thức 
(Xiaochen et al., 2019): 

                              
,

(0)

,

1ˆ
obs m

m i
i Xobs m

x x
X ∈

= ∑  (6) 

Trong đó: ,obs mX  là tập hợp các giá trị quan sát 

thứ m, ,obs mX  là số lượng phần tử trong tập ,obs mX , 

và ix là các giá trị quan sát trong tập dữ liệu  
huấn luyện. 

Cách tiếp cận này giúp đảm bảo rằng mô hình 
TRAE có thể học cách nội suy giá trị khuyết một 
cách hiệu quả thông qua quá trình tối ưu hóa lặp dần, 
thay vì chỉ dựa vào các phương pháp điền khuyết 
truyền thống. 

Bước 3: Cập nhật tham số mô hình 

Hàm tổn thất ( )tL  đo lường sai số giữa giá trị 
ước lượng mô phỏng iy  và giá trị thực tế ix  trong 
dữ liệu đầu vào. Hàm tổn thất này bao gồm hai phần: 
một phần cho các giá trị đã biết ( obsX ) và một phần 
cho các giá trị khuyết ( missX ) (Yang et al., 2024): 

( ) ( )2 2( ) ( ) ( 1) ( )1 1 ˆ
2 2

obs miss

t t t t
i i m m

i X i X
L x y x y−

∈ ∈

= − + −∑ ∑  (7) 

Đặt { }(1) (2) (1) (2) ( )ˆ, , , , t
mW W b b xθ =  là vector 

chứa tất cả các tham số cần tối ưu, bao gồm cả các 
giá trị khuyết. Quá trình tối ưu sử dụng phương pháp 
Stochastic Gradient Descent (SGD) để cập nhật 
tham số theo đạo hàm của hàm tổn thất ( )tL  
(Hu et al., 2016): 

( )
( ) ( 1)

t
t t Lθ θ η

θ
− ∂

= −
∂

 (8) 

Trong đó: ( )tθ  là vector chứa tất cả tham số cần 
tối ưu tại lần lặp t, ( 1)tθ − là giá trị của tham số ở lần 

lặp t - 1 và 
( )tdL

dθ
 là đạo hàm của hàm tổn thất ( )tL  

đối với các tham số trong vectơ θ  tại lần lặp t. 

Bước 4: Cập nhật giá trị khuyết từ giá trị mô 
hình TRAE 

Các giá trị được cập nhật từ quá trình tối ưu SGD 
sẽ thay thế các giá trị bị khuyết trong tập dữ liệu 
bằng các ước lượng mới từ bước 3. Tập dữ liệu sau 
khi cập nhật sẽ được sử dụng cho lần lặp tiếp theo. 
(Hu et al., 2016) 

                        
( )

( ) ( 1)
( 1)

ˆ ˆ
ˆ

t
t t

m m t
m

Lx x
x

η−
−

∂
= −

∂
 (9) 
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Trong đó: ( )ˆ t
mx là giá trị được xác định của giá trị 

bị khuyết tại lần lặp t, ( 1)ˆ t
mx −  là giá trị được xác định 

của giá trị bị khuyết tại lần lặp t - 1 và 
( )

( 1)ˆ

t

t
m

L
x −

∂
∂

là đạo 

hàm của hàm tổn thất ( )tL  đối với giá trị ( 1)ˆ t
mx −  tại 

lần lặp t - 1. 

Bước 5: Kiểm tra điều kiện hội tụ và kết thúc 

Khi số lần lặp tối đa hoặc khi sự thay đổi trong 
hàm tổn thất nhỏ hơn ngưỡng được xác định trước, 
quá trình đào tạo kết thúc và các giá trị ước tính được 
coi là kết quả cuối cùng. 

Hàm kiểm tra điều kiện hội tụ trong quá trình 
đào tạo mô hình hoặc tối ưu hóa được định nghĩa 
như sau: 

                             ( ) ( 1)t tL L ε−− <  (10) 

Trong đó: ( )tL  là giá trị của hàm tổn thất tại lần 
lặp t, là giá trị của hàm tổn thất tại lần lặp trước đó 
( 1)t −  và ε  là ngưỡng, thường được đặt trong phạm 
vi từ 410−  đến 610− . 

2.3. Loại bỏ giá trị sai lệch 

Nghiên cứu sau khi thực hiện bước lựa chọn đặc 
trưng đã cho ra kết quả vận tốc gió là yếu tố có ảnh 
hưởng lớn nhất đến công suất phát của tuabin. Do 
đó, tập dữ liệu được xét sẽ tập trung vào hai thành 
phần chính: vận tốc gió (giá trị đầu vào) và công suất 
tuabin (giá trị đầu ra). 

Để xây dựng mô hình dự báo sản lượng điện của 
tuabin gió, cần loại trừ các tác động bên ngoài ảnh 
hưởng đến dữ liệu điện gió như: cắt giảm lưới điện, 
ngừng hoạt động hoặc giảm sản lượng điện. Các giá 
trị ngoại lệ phải được phát hiện và loại bỏ trước khi 
lập mô hình. Tuy nhiên, việc lọc dữ liệu quá mức có 
thể dẫn đến quá khớp, điều này không mong muốn, 
đặc biệt đối với các ứng dụng như dự báo bằng dữ 
liệu chưa biết (Hình 5). 

Một cách tiếp cận để quản lý các giá trị ngoại lệ 
liên quan đến việc loại trừ các điểm dữ liệu nằm 
ngoài phạm vi được xác định bởi Q1 – 1,5×IQR và 
Q3 + 1,5×IQR, trong đó Q1 và Q3 lần lượt biểu thị 
tứ phân vị thứ nhất và thứ ba, và IQR (Phạm vi liên 
tứ phân vị) được tính là Q3 – Q1. Hệ số nhân 1,5 bắt 
nguồn từ định lý giới hạn trung tâm (Central Limit 
Theorem), kết quả chỉ ra rằng trong phân phối 
chuẩn, các điểm dữ liệu vượt quá 1,5 lần IQR được 
coi là giá trị ngoại lệ. 

 
Hình 5. Xác định ngưỡng giới hạn của dữ liệu 

Bước 1: Thu thập dữ liệu từ hệ thống SCADA từ 
tuabin gió: 

{ }( , ) | 1, 2,...,i iX v P i N= =  (11) 

Trong đó: iv  là vận tốc gió (m/s), iP  là công suất 
của tuabin (kW) tại thời điểm i. 

Bước 2: Xây dựng mô hình đường cong  
công suất 

Mô hình đường cong công suất được thiết kế để 
mô tả mối quan hệ phi tuyến giữa công suất và tốc 
độ gió. Sau khi thử nghiệm nhiều hàm sigmoid 
(logistic, tanh) trên dữ liệu thực tế, hàm hyperbolic 
tangent (tanh) kết hợp với đa thức bậc 4 của tốc độ 
gió được lựa chọn nhờ độ phù hợp cao nhất. Phương 
trình mô hình đường cong công suất được biểu diễn 
như sau: 

( )4
max

ˆ( ) tanh ( )P v P a v b= × × +  (12) 

Trong đó: ˆ( )P v  là công suất dự đoán tương ứng 
với tốc độ gió v, maxP  là công suất tối đa của tuabin; 
v là tốc độ gió (m/s) và a, b là các hệ số cần tối ưu 
hóa. 

Bước 3: Tối ưu hóa tham số bằng hồi quy 
phân vị (Quantile Regression) 

Để xác định các đường cong biên Q1 (25%) và 
Q3 (75%), phương pháp hồi quy phân vị (Quantile 
Regression) được sử dụng. Phương pháp này giảm 
thiểu các lỗi tuyệt đối có trọng số dựa trên phân vị, 
khác với hồi quy tuyến tính truyền thống, dựa trên 
bình phương tối thiểu thông thường, do đó giảm ảnh 
hưởng của các giá trị cực trị lên đường cong được 
lắp. Hàm tổn thất được định nghĩa (He et al., 2018): 

Nếu: ˆ( ) 0i iP P v− ≥  

( ) ( )
1

ˆ )ˆ, ( ) (
N

i i i
i

iL PP P v P vτ
=

× −= ∑  (13) 
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Nếu: ˆ( ) 0i iP P v− <  

( ) ( )
1

) ˆ( 1)( (ˆ, )ii i
i

i

N

L PP P Pv vτ
=

= − × −∑  (14) 

Trong đó: τ là mức phân vị ( 0, 25τ =  cho Q1 và 
0,75τ =  cho Q3) 

Vì hàm tổn thất là hàm không tuyến tính (kết hợp 
hàm tan hyperbolic và đa thức bậc bốn), phương 
pháp Gradient Descent được sử dụng để tối ưu hóa 
các tham số dựa trên đạo hàm của hàm tổn thất, với 
hàm mục tiêu (He et al., 2018): 

( )( )* *
,

1

ˆ( , ) arg min
n

a b i i
i

a b P P vτ τ τρ
=

= −∑  (15) 

Phương pháp Gradient Descent được áp dụng để 
tối ưu tham số a, b. Các tham số được cập nhật theo 
công thức (He et al., 2018): 

( ) ( )
( 1) ( ) ( 1) ( ),

t t
t t t tL La a b b

a b
η η+ +∂ ∂

= − = −
∂ ∂

 (16) 

Trong đó: ( ) ( ),t ta b là giá trị tham số a, b tại lần 

lặp t; ( 1) ( 1),t ta b+ +  là giá trị tham số a tại lần lặp t+1; 
( ) ( )

,
t tL L

a b
∂ ∂
∂ ∂

là đạo hàm của hàm tổn thất L đối với 

tham số a, b. 

Bước 4: Xây dựng đường cong dự đoán các 
phân vị: 

Đối với Q1(v) (phân vị thứ 25, 0, 25τ = ): 

( )4
0,25 0,25 0,25( ) ( ) (1 )maxQ v f x P tanh a v b= = × +  (17) 

Đối với Q3(v) (phân vị thứ 75, 0,75τ = ): 

( )4
0,75 0,75 0,75( ) ( ) (3 )maxQ v f x P tanh a v b= = × +  (18) 

Trong đó, các tham số 0,25a , 0,25b  và 0,75a , 0,75b
được tìm ra bằng quá trình tối ưu hóa hàm tổn thất 
của hồi quy phân vị ở bước 3. 

Bước 5: Xác định ngưỡng giới hạn:  

Ngưỡng giới hạn được tính bằng quy tắc 1,5 × 
IQR, trong đó IQR = Q3 - Q1, đồng thời điều chỉnh 
bởi một hệ số dung sai để tránh overfitting, đặc biệt 
khi huấn luyện mô hình dự báo trên dữ liệu chưa 
thấy trước đó. Các ngưỡng được xác định như sau: 

− Ngưỡng giới hạn trên (Upper limit): 
( ) ( ( ) )1 3 1,5 ( )tol Q v IQR v− × − ×  (19) 

− Ngưỡng giới hạn dưới (Lower limit): 

( ) ( ( ) )1 1 1,5 ( )tol Q v IQR v− × − ×  (20) 

Trong đó, hệ số dung sai ±1,5% được áp dụng 
một cách tùy ý để giữ lại các điểm dữ liệu có độ lệch 
nhỏ, đặc biệt trong các vùng mà công suất đầu ra đạt 
mức tối đa của tuabin gió. 

Bước 6: Lọc dữ liệu sai lệch 

Đối với mỗi điểm dữ liệu ( , )i iv P  trong tập dữ 
liệu { }( , ) | 1, 2,...,i iX v P i N= = , nếu giá trị công 
suất iP  nằm trong giới hạn ngưỡng, nó được coi là 
giá trị bình thường: 

   iLower Limit P Upper Limit≤ ≤  (21) 

Các giá trị công suất iP  vượt quá ngưỡng trên sẽ 
được xác định là ngoại lai và bị loại khỏi tập dữ liệu 
nhằm đảm bảo chất lượng dữ liệu trước khi thực 
hiện mô hình hóa hoặc dự báo. 

2.4. Mô hình dự báo 

Mô hình mạng hồi quy Perceptron đa tầng (MLP 
Regression) (Hình 6) là một kỹ thuật học máy 
(Machine Learning) tận dụng kiến trúc mạng nơ-ron 
nhiều lớp, lấy cảm hứng từ cấu trúc thần kinh của 
não bộ con người. Trong MLP, các nơ-ron được tổ 
chức thành các lớp kết nối với nhau, trong đó mỗi 
nơ-ron ở một lớp sẽ liên kết với các nơ-ron ở lớp 
tiếp theo thông qua các trọng số có thể điều chỉnh. 
Trong quá trình huấn luyện, các trọng số này được 
tối ưu hóa liên tục để nâng cao khả năng của mô hình 
trong việc phân tích và nhận diện các quy luật ẩn 
trong dữ liệu. 

Thế mạnh chính của MLP nằm ở khả năng mô 
hình hóa và học các mối quan hệ phi tuyến giữa các 
đặc trưng đầu vào và đầu ra mục tiêu, giúp dự đoán 
hoặc phân loại chính xác hơn. 

 
Hình 6. Sơ đồ mạng nơ-ron hồi quy Multi-Layer 

Perceptron – MLP 
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Cấu trúc của MLP bao gồm ba loại lớp chính: 

Lớp đầu vào: nhận dữ liệu đầu vào thô, đóng vai 
trò là điểm khởi đầu để mạng thực hiện tính toán. 

Lớp ẩn: bao gồm một hoặc nhiều lớp nơ-ron, có 
nhiệm vụ xử lý dữ liệu đầu vào và trích xuất các đặc 
trưng quan trọng. Các lớp ẩn sử dụng hàm kích hoạt 
phi tuyến để biến đổi dữ liệu, giúp mạng học được 
các mẫu phức tạp. 

Lớp đầu ra: tạo ra kết quả đầu ra của mô hình 
dựa trên các đặc trưng đã học từ các lớp ẩn. Đối với 
bài toán hồi quy, đầu ra thường là một giá trị liên tục 
(ví dụ: công suất điện gió dự báo). 

Cơ chế hoạt động của MLP bắt đầu từ lớp đầu 
vào, nơi dữ liệu được đưa vào mạng. Mỗi nơ-ron 
tính tổng có trọng số của các đặc trưng đầu vào, áp 
dụng một hàm kích hoạt, rồi truyền giá trị tính được 
đến lớp ẩn đầu tiên. Quá trình này tiếp tục qua các 
lớp ẩn cho đến khi dữ liệu đi đến lớp đầu ra, nơi dự 
báo cuối cùng được tạo ra. 

Việc xác định số lượng lớp ẩn tối ưu trong mô 
hình MLP đòi hỏi một quá trình thử nghiệm lặp đi 
lặp lại. Các cấu hình mạng khác nhau được thử 
nghiệm và đánh giá dựa trên các chỉ số sai số để xác 
định cấu trúc mang lại độ chính xác cao nhất. Cách 
tiếp cận này giúp phát triển một mô hình đáng tin 
cậy, có khả năng xử lý tốt sự phức tạp của dữ liệu. 

3. KẾT QUẢ VÀ THẢO LUẬN 
3.1. Dữ liệu 
Dữ liệu trong bài báo này được thu thập từ 

các dự án hợp tác khoa học tại Đài Loan, liên 
quan đến phát điện gió. Tập dữ liệu bao gồm 
hai bộ dữ liệu riêng biệt như sau: 

Tập dữ liệu huấn luyện (Training Data): 
− Khoảng thời gian giữa các điểm dữ liệu: 10 

phút 
− Thời gian thu thập: 1 năm. 
− Cấu trúc: 4 cột (3 biến đầu vào, 1 biến đầu 

ra), khoảng 52.560 dòng (tính theo: 365 ngày × 24 
giờ × 6 khoảng thời gian/giờ). 

− Dữ liệu đầu vào: nhiệt độ môi trường, tốc độ 
gió, hướng gió. 

Tập dữ liệu này được sử dụng để huấn luyện mô 
hình dự báo bằng cách phân cụm dữ liệu thành các 
nhóm khác nhau, giúp mô hình học được các quy 
luật đặc trưng của sản xuất điện gió. 

Tập dữ liệu kiểm tra (Testing Data): 

− Khoảng thời gian giữa các điểm dữ liệu: 10 
phút. 

− Thời gian thu thập: 7 tháng. 
− Cấu trúc: 4 cột (3 biến đầu vào, 1 biến đầu 

ra), khoảng 30.660 dòng (tính theo: 213 ngày × 24 
giờ × 6 khoảng thời gian/giờ). 

− Dữ liệu đầu vào: nhiệt độ môi trường, tốc độ 
gió, hướng gió. 

Tập dữ liệu này được sử dụng để dự báo công 
suất điện gió và đánh giá tính ổn định của mô hình 
khi xử lý dữ liệu có sai số, kiểm tra độ tin cậy và khả 
năng thích ứng của mô hình. 

Tập dữ liệu huấn luyện (training data) được sử 
dụng để đánh giá khả năng dự báo công suất phát 
điện gió của mô hình, bao gồm các bước: xử lý dữ 
liệu, kỹ thuật lọc dữ liệu và phương pháp xây dựng 
mô hình dự báo công suất phát điện gió dựa trên 
phân cụm. Việc tham khảo một số nghiên cứu trước 
thường có giá trị sai số khá cao, mức sai số đã được 
đặt ra khoảng 5% hoặc thấp hơn cho việc xác nhận 
rằng mô hình đáp ứng yêu cầu, vận hành ổn định và 
có độ tin cậy cao (Lin & Liu, 2020; Zhang  
et al., 2020).  

Sau khi hoàn thiện mô hình dự báo, bộ dữ liệu 
kiểm tra sẽ được sử dụng để xác minh các bước thực 
hiện và các phương pháp được chọn khi áp dụng cho 
dữ liệu mới. Quá trình này giúp đánh giá khả năng 
ứng dụng của mô hình trong điều kiện thực tế và khả 
năng mở rộng cho các loại dữ liệu khác nhau, đảm 
bảo tính hiệu quả của mô hình dự báo điện gió trong 
thực tế. 

3.2. Sai số của các mô hình dự báo công suất 
phát điện gió 

Trong bài báo này, hai chỉ số sai số được lựa 
chọn làm tiêu chí đánh giá để xác định số lượng lớp 
ẩn phù hợp trong các bước xây dựng mô hình dự báo 
phát điện gió, bao gồm sai số bình phương trung 
bình gốc (RMSE - Root Mean Squared Error) và sai 
số tương đối trung bình (MRE - Mean  
Relative Error). 

Sai số bình phương trung bình gốc (RMSE) được 
sử dụng phổ biến trong các bài toán hồi quy để đo 
căn bậc hai của trung bình tổng bình phương sai lệch 
giữa giá trị dự đoán của mô hình và giá trị thực tế. 
Đây là một trong những tiêu chí quan trọng để đánh 
giá, xác định và lựa chọn các mô hình dự báo hiệu 
quả vì nó cung cấp một thước đo lỗi có cùng đơn vị 
với dữ liệu gốc. RMSE càng thấp thì độ chính xác 
càng cao và càng phù hợp với dữ liệu thực tế, vì nó 
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trừng phạt mạnh các sai số lớn trong khi phản ánh 
hiệu suất tổng thể của mô hình. 

2

1

1 ˆ( )
n

i i
i

RMSE y y
n =

= −∑  (22) 

Sai số tương đối trung bình (MRE) là trung bình 
của các sai số tuyệt đối giữa giá trị dự đoán của mô 
hình và giá trị thực tế, được biểu thị dưới dạng phần 
trăm của giá trị gốc. Đây là một chỉ số quan trọng để 
đánh giá mô hình dự báo, vì nó chuẩn hóa sai số theo 
độ lớn của dữ liệu thực tế, cung cấp cái nhìn sâu sắc 
về độ chính xác tỷ lệ của dự đoán. MRE thấp hơn 
thể hiện độ chính xác cao hơn và hiệu suất mô hình 
dự báo tốt hơn, đặc biệt trong việc phản ánh chính 
xác độ lệch tương đối so với quan sát thực tế. 

                           
1

ˆ1 n
i i

i i

y y
MRE

n y=

−
= ∑  (23) 

Trong đó: n  là tổng số quan sát, iy  là giá trị 
thực tế tại quan sát thứ i, ˆiy  là giá trị dự báo tại quan 
sát thứ i. 

Tuy nhiên, sai số MRE được hiển thị dưới dạng 
phần trăm (%) nhằm giúp dễ dàng so sánh mức độ 
sai lệch giữa giá trị thực tế và giá trị dự đoán trong 
một phạm vi chuẩn hóa, đồng thời làm cho kết quả 
trở nên dễ hiểu hơn khi phân tích và đánh giá độ 
chính xác của mô hình. 

3.3. Kết quả 

Dữ liệu đầu vào được xử lý theo các bước được 
trình bày trong lưu đồ các bước, quy trình xây dựng 
mô hình dự báo học máy. Sau khi hoàn tất quá trình 
tiền xử lý, tập dữ liệu đầu vào trở thành một tập dữ 
liệu hoàn chỉnh, sẵn sàng để huấn luyện mô hình  
dự báo. 

Trong giai đoạn phân cụm dữ liệu, việc xác định 
số cụm tối ưu được thực hiện để đảm bảo phân nhóm 
hiệu quả và nâng cao độ chính xác cũng như khả 
năng diễn giải kết quả. Phương pháp Elbow (Hình 
7) được sử dụng cho mục đích này, dựa trên tổng 
bình phương khoảng cách trong cụm (WCSS) để xác 
định số lượng cụm K. Công thức tính WCSS được 
định nghĩa như sau: 

2

1 i

K

i
i x C

WCSS x µ
= ∈

= −∑∑  (24) 

Khi số cụm K tăng lên, giá trị WCSS sẽ giảm, 
nhưng đến một điểm nhất định, sự suy giảm này trở 
nên không đáng kể, tức là xuất hiện điểm gãy khuỷu 
tay (elbow), có nghĩa là việc tăng thêm số cụm K sẽ 
không cải thiện đáng kể kết quả phân cụm. 

 
Hình 7. Đồ thị thuật toán Elbow 

Kết quả được thể hiện ở Hình 7 cho thấy WCSS 
giảm đáng kể đến một điểm tại K = 5, sau đó sự suy 
giảm trở nên chậm lại và ổn định. Do đó, năm cụm 
được xác định là số lượng tối ưu để phân nhóm dữ 
liệu hiệu quả (Hình 8). 

Thay vì tạo một mô hình duy nhất cho toàn bộ 
tập dữ liệu, một mô hình riêng biệt sẽ được phát triển 
cho từng cụm. Cách tiếp cận này được lựa chọn vì 
các điểm dữ liệu trong cùng một cụm thường có đặc 
điểm giống nhau. Do đó, mô hình của từng cụm sẽ 
được phân tích chi tiết và phù hợp hơn với các thuộc 
tính riêng của cụm đó, từ đó nâng cao độ chính xác 
của dự báo. 

Các mô hình mạng nơ-ron nhân tạo MLP với 1, 
2, 3, 4 và 5 lớp ẩn, mỗi lớp chứa 32 nơ-ron được 
thiết lập cho từng cụm dữ liệu. Số lượng nơ-ron, cấu 
trúc mạng và các tham số được xác định thông qua 
khảo sát thực nghiệm để cân bằng giữa độ phức tạp 
của mô hình và hiệu quả tính toán. 

Sau khi huấn luyện và lưu trữ các tham số tối ưu, 
các mô hình này được so sánh để đánh giá mức độ 
tương đồng giữa giá trị dự báo và giá trị thực tế tại 
tuabin gió (Hình 9). 

 
Hình 8. Đồ thị phân cụm với 5 cụm dữ liệu 

Dựa trên tiêu chí chọn số lớp ẩn có sai số thấp 
nhất, ta có: 

− Cụm 0: 3 hidden layers (RMSE = 38,06, 
MRE = 2,52%). 
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− Cụm 1: 5 hidden layers (RMSE = 12,58, 
MRE=1,5%). 

− Cụm 2: 5 hidden layers (RMSE = 16,37, 
MRE = 1,6%). 

− Cụm 3: 4 hidden layers (RMSE = 34,13, 
MRE = 1,50%). 

− Cụm 4: 4 hidden layers (RMSE = 24,84, 
MRE = 2,67%). 

 
Hình 9. Đồ thị tương quan công suất dự báo và thực tế  

Bảng 2. Đánh giá sai số mô hình ở các cụm dữ liệu 
Lớp ẩn 

Cụm 
1 2 3 4 5 

RMSE MRE RMSE MRE RMSE MRE RMSE MRE RMSE MRE 
0 48,67 3,12% 39,28 2,70% 38,06 2,52% 39,50 2,63% 42,08 2,85% 
1 14,34 1,58% 12,68 1,51% 12,84 1,51% 12,71 1,7% 12,58 1,5% 
2 19,33 1,74% 16,96 1,66% 16,94 1,66% 16,86 1,64% 16,37 1,6% 
3 41,40 1,88% 46,39 1,93% 36,46 1,60% 34,13 1,50% 37,94 1,75% 
4 32,62 3,67% 24,81 2,75% 24,38 3,66% 24,84 2,67% 24,66 2,69% 

Trong điều kiện thực tế, sai số trong dự báo tốc 
độ gió có thể thay đổi do nhiều yếu tố khác nhau (địa 
hình, thời tiết cực đoan, hạn chế của các mô hình dự 
báo thời tiết). Việc đưa sai số vào tập dữ liệu của mô 
hình dự báo năng lượng gió có nhiều mục đích giúp 
đánh giá khả năng áp dụng của mô hình trong các 
kịch bản khác nhau. 

Thứ nhất, nó kiểm tra độ bền vững của mô hình 
bằng cách đánh giá khả năng xử lý dữ liệu không 
hoàn hảo, đảm bảo tính đáng tin cậy trong các tình 
huống thực tế. Thứ hai, nó xác thực độ chính xác của 
mô hình dự báo bằng cách mô phỏng các kịch bản 
thực tế, trong đó dữ liệu có thể bị nhiễu hoặc không 
chính xác, qua đó xác nhận hiệu quả của mô hình 
trong điều kiện không lý tưởng. Ngoài ra, việc thêm 
sai số giúp đánh giá khả năng tổng quát hóa của mô 
hình dự báo, xác định xem mô hình có thể hoạt động 
tốt, chính xác trên dữ liệu mới hay không. 

Quá trình này cũng hỗ trợ tối ưu hóa các tham số 
của mô hình nhằm cải thiện độ chính xác của dự báo 
và tăng hiệu quả tính toán. Hơn nữa, việc đưa sai số 
vào giúp tăng sự đa dạng của dữ liệu, cho phép mô 
hình học được nhiều dạng mẫu khác nhau, từ đó cải 
thiện khả năng dự báo. 

Cụ thể, trong bài báo này, sáu kịch bản đã được 
kiểm tra với các mức sai số ngẫu nhiên trong khoảng 
-10%, -20%, -30%, +10%, +20% và +30% sử dụng 
Việc phân phối Gaussian để mô hình hóa sai số dự 
báo (Xu et al., 2024). Cách tiếp cận này đảm bảo 
rằng mô hình dự báo năng lượng gió đạt độ chính 
xác cao, bền vững và đáng tin cậy trong các ứng 
dụng thực tiễn, qua đó hỗ trợ phát triển và sử dụng 
hiệu quả năng lượng gió như một nguồn năng lượng 
thay thế bền vững. 

( ) ( )2

22

1 exp
22error

error
v error

v
f v

µ
σπσ

 −
 = −
 
 

 (25) 

Trong đó: ( )f •  là hàm mật độ xác suất của phân 
phối Gaussian, µ  là giá trị trung bình hoặc kỳ vọng 
của phân phối và 2σ  là phương sai. 

Mô hình dự báo với dữ liệu thời tiết có sai số trong 
sáu kịch bản: -10%, -20%, -30%, +10%, +20% và 
+30%. Kết quả được đánh giá bằng cách so sánh giá 
trị dự báo với giá trị công suất thực tế (Hình 10). Các 
kết quả của quá trình dự báo được tổng hợp  
trong Bảng 3.
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Bảng 3. Đánh giá sai số mô hình với dữ liệu thời tiết có sai số 
Sai số -10% -20% -30% +10% +20% +30% 
RMSE 112,75 98,97 155,14 39,18 68,42 112,75 
MRE 3,45% 3,34% 4,24% 1,30% 2,07% 3,45% 

 
Hình 10. Đồ thị tương quan công suất dự báo và thực tế dữ liệu thời tiết có sai số

Khi so với các nghiên cứu trước (Lin & Liu, 
2020; Yao et al., 2020; Zhang et al., 2020; Wang et 
al., 2021; Zhao & Bai, 2024; Tian et al., 2025), các 
chỉ số sai số như RMSE và MRE cũng được sử dụng 
trong các bài viết này để đánh giá hiệu quả của mô 
hình dự báo. Tuy nhiên, kết quả sai số từ các nghiên 
cứu này đều có giá trị cao hơn. Cụ thể, trong bài báo 
(Lin & Liu, 2020), giá trị sai số RMSE có thể dao 
động từ 517,33 cho đến hơn 22303.30; trong khi đó, 
ở bài báo (Tian et al., 2025), sai số dao động từ 
101.7532 đến 110.4740, và trong bài báo (Zhang et 
al., 2020), sai số dao động từ 129,3 đến 175,1. So 
với giá trị sai số RMSE như trên, các kết quả thu 
được từ các cụm trong mô hình dự báo của nghiên 
cứu này chỉ dao động từ 38.06 trở xuống, cho thấy 
hiệu quả vượt trội của mô hình. Đối với chỉ số MRE, 
mức sai số ở các bài nghiên cứu khác thường vượt 
quá 5%, với sai số thấp nhất ghi nhận là 5.8942% 
trong nghiên cứu của Wang et al., 2021). Ở một 
nghiên cứu khác, Yao et al. (2020) việc so sánh 
nhiều phương pháp dự báo và nhận thấy mô hình 
LSTM (Long Short-Term Memory) đã được thực 
hiện và cho kết quả tốt nhất với sai số19,24%. Bên 
cạnh đó, trong nghiên cứu của Zhao and Bai (2024), 
phương pháp dự báo trong hai điều kiện thời tiết đặc 
trưng – mùa hè và mùa đông đã được áp dụng và ghi 
nhận sai số lần lượt là 12.1573% và 21.6826%. 
Trong khi đó, kết quả của nghiên cứu này duy trì sai 
số dưới 5%. Điều này cho thấy mô hình trong bài 
báo này đạt hiệu quả dự báo tốt hơn về mặt sai số. 
Trong ba nghiên cứu của Yao et al. (2020), Wang et 

al. (2021) và Zhao and Bai (2024), chỉ số sai số 
MAPE (Mean Absolute Percentage Error) đã được 
sử dụng, nhưng về bản chất, MAPE là một cách thể 
hiện sai số của MRE dưới dạng phần trăm. Do đó, 
việc so sánh kết quả sai số giữa các nghiên cứu là 
hợp lý và có cơ sở. Hơn nữa, các tập dữ liệu được 
sử dụng trong mỗi nghiên cứu là khác nhau. Vì vậy, 
việc so sánh với các nghiên cứu trước dựa trên sự 
tương đồng trong việc lựa chọn các chỉ số sai số 
RMSE và MRE được thực hiên, với kết quả của 
nghiên cứu này cho thấy sai số thấp hơn, khẳng định 
độ chính xác của mô hình dự báo. 

4. KẾT LUẬN 

Machine Learning trong dự báo công suất phát 
điện gió được ứng dụng trong nghiên cứu này với 
sai số trong từng kịch bản đều dưới 5%. Các bước 
phân tích dữ liệu, tiền xử lý dữ liệu (điền dữ liệu 
khuyết, loại bỏ dữ liệu ngoại lai) cùng với cách tiếp 
cận có hệ thống được trình bài trong nghiên cứu đã 
giúp xây dựng một mô hình dự báo công suất phát 
điện gió hiệu quả, đạt được dự báo có tỷ lệ sai số 
thấp và độ chính xác cao.   

Ngoài ra, các kết quả từ bài báo này cũng có thể 
áp dụng cho việc dự báo công suất điện gió thực tế 
bằng cách sử dụng các tập dữ liệu huấn luyện lớn 
được thu thập từ các nhà máy điện gió trong và ngoài 
nước. Những kết quả này tạo ra một nền tảng vững 
chắc cho sự phát triển tương lai của công nghệ dự 
báo năng lượng tái tạo và việc ứng dụng nó trong 
điều độ công suất phát của hệ thống điện. 
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