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TÓM TẮT 
Lưu đồ giải thuật được đề xuất trong bài báo nhằm đánh giá ảnh 
hưởng của các tham số trong giải thuật Bayesian Optimization với 
Gaussian Process (BO-GP) đối với mô hình LightGBM trong bài toán 
dự báo phụ tải ngắn hạn. Các siêu tham số được khảo sát bao gồm: 
learning_rate, n_estimators, max_depth, subsample và 
colsample_bytree. Hiệu suất của giải thuật BO-GP được đánh giá dựa 
trên hai tham số chính: số vòng lặp tối ưu hóa (n_iter) và số lần chia 
tập dữ liệu huấn luyện (k-fold). Để kiểm tra độ ổn định của mô hình, 
hệ số phân tán CD% được tính toán bằng cách lặp lại BO-GP n = 30 
lần. Tập dữ liệu phụ tải đỉnh hàng ngày từ bang Victoria, Úc được sử 
dụng trong nghiên cứu. Kết quả thực nghiệm cho thấy, giá trị tối ưu 
của n_iter là 80, trong khi giá trị mặc định là 50. Tương tự, k-fold đạt 
hiệu suất tốt nhất tại 4, 6 và 7, trong khi giá trị mặc định là 3. Tầm 
quan trọng của việc lựa chọn tham số phù hợp được nhấn mạnh trong 
nghiên cứu nhằm tối ưu hóa mô hình LightGBM khi áp dụng vào dự 
báo phụ tải. 

Từ khóa: Dự báo phụ, mô hình LightGBM, giải thuật BO-GP 

ABSTRACT 
This paper proposes an algorithm flowchart to evaluate the impact 
of parameters in the Bayesian Optimization using the Gaussian 
Process (BO-GP) algorithm on the LightGBM model for short-
term load forecasting. The investigated hyperparameters include 
learning_rate, n_estimators, max_depth, subsample, and 
colsample_bytree. The performance of the BO-GP algorithm is 
assessed based on two primary parameters: the number of 
optimization iterations (n_iter) and the number of folds in cross-
validation (k-fold). To assess the model's stability, the coefficient 
of dispersion (CD%) is calculated by repeating the BO-GP process 
n = 30 times. The study utilizes daily peak load data from Victoria, 
Australia. The experiments revealed that the optimal n_iter value 
was 80, compared to the default of 50. Similarly, optimal 
performance for k-fold was observed at values of 4, 6, and 7, while 
the default was 3. The study highlights the importance of selecting 
appropriate parameters of the BO-GP algorithm to optimize the 
LightGBM model for load forecasting. 

Keywords: Load forecasting, LightGBM model, BO-GP algorythm 
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1. GIỚI THIỆU 

Dự báo nhu cầu phụ tải có vai trò quan trọng 
trong vận hành, truyền tải, phân phối và bán lẻ hệ 
thống điện. Các mô hình dự báo phụ tải chính xác 
có thể hỗ trợ các nhà quản lý hệ thống điện trong 
việc tối ưu hóa sản xuất, phân phối và tiêu thụ năng 
lượng (Fan & Hyndman, 2010). Các phương pháp 
dự báo phụ tải đã phát triển từ các mô hình kinh điển 
như: hồi quy tuyến tính (Vu et al., 2017), làm mịn 
hàm mũ (Kahraman & Akay, 2023),  ARIMA (Kien 
et al., 2023), đến các mô hình tiên tiến như mạng nơ-
ron nhân tạo (ANN) (Le et al., 2019), học máy SVM 
(Tran et al., 2024), học sâu như CNN, LSTM (Wang 
et al., 2024), gần đây là các mô hình học kết hợp 
như: XGBoost, Catboost và LightGBM (Tran & 
Nguyen, 2024). Trong đó, LightGBM là một thuật 
toán mạnh mẽ, được phát triển dựa trên Gradient 
Boosting Decision Trees (GBDT), có ưu điểm vượt 
trội về hiệu suất tính toán, khả năng xử lý dữ liệu 
lớn và độ chính xác cao. 

Giống như nhiều mô hình học máy khác, hiệu 
suất của LightGBM phụ thuộc vào việc lựa chọn các 
siêu tham số của nó. Một số siêu tham số quan trọng 
của mô hình LightGBM bao gồm: learning_rate (tốc 
độ học), n_estimators (số lượng cây quyết định), 
max_depth (độ sâu tối đa của cây quyết định), 
subsample (tỷ lệ mẫu con), colsample_bytree (tỷ lệ 
đặc trưng được chọn cho mỗi cây) (Liang et al., 
2021). Việc lựa chọn các siêu tham số tối ưu giúp 
mô hình đạt được độ chính xác cao nhất, do đó, việc 
tìm ra các giá trị siêu tham số tối ưu là rất quan trọng 
trong việc áp dụng mô hình LightGBM. Nhiều 
phương pháp tối ưu hóa khác nhau, chẳng hạn như 
Grid Search, Random Search, Genetic Algorithms 
và Bayesian Optimization đã được sử dụng để giải 
quyết thách thức này (Yang & Shami, 2020). Trong 
các thuật toán này, giải thuật Bayesian Optimization 
with Gaussian Process (BO-GP) là một trong những 
kỹ thuật tiên tiến, giúp giảm số lần thử nghiệm cần 
thiết để tìm ra cấu hình siêu tham số tốt nhất. BO-
GP hoạt động bằng cách sử dụng Gaussian Process 
(GP) để mô hình hóa hàm mục tiêu và hướng dẫn 
quá trình tìm kiếm siêu tham số một cách hiệu quả. 

Giải thuật BO-GP có một số tham số ảnh hưởng 
đến kết quả tìm kiếm, chẳng hạn như n_iter (số vòng 
lặp tối ưu hóa), không gian siêu tham số và hàm mục 
tiêu. Trong đó số lần lặp n_iter là tham số quan trọng 
nhất trong BO-GP vì đó là số lần lặp lại quá trình 
cập nhật mô hình GP để tìm kiếm siêu tham số tốt 
nhất (Tran & Nguyen, 2024). Ngoài ra, thuật toán 
BO-GP thường được kết hợp với quy trình xác thực 
chéo để tránh tình trạng quá khớp. Dữ liệu được chia 

thành các phần k-fold trong xác thực chéo, được gọi 
là xác thực chéo k-fold (Papadopoulos et al., 2023). 
Do đó, hai tham số có ảnh hưởng nhất trong BO-GP 
là số lần lặp và giá trị k-fold. Thuật toán BO-GP đã 
được sử dụng trong nhiều nghiên cứu để xác định 
siêu tham số tối ưu cho các mô hình học máy. Tuy 
nhiên, hầu hết các tác giả sử dụng các giá trị mặc 
định cho hai tham số này: số lần lặp n_iter = 50 và 
k-fold = 3 (Yang & Shami, 2020; Zwolle, 2022; 
Starukhin & Diukarev, 2024; Dwi et al. , 2025). 
Hiện tại, rất ít kết quả nghiên cứu đề cập đến tác 
động của các tham số này đối với thuật toán Bo-GP 
trong các mô hình LightGBM cho các vấn đề hồi 
quy, đặc biệt là trong bối cảnh dự báo phụ tải. 

Để giải quyết những thiếu sót của nghiên cứu 
hiện tại, một lưu đồ giải thuật được đề xuất nhằm 
đánh giá ảnh hưởng của các tham số trong giải thuật 
BO-GP đối với mô hình LightGBM trong bài toán 
dự báo phụ tải. Các siêu tham số của mô hình 
LightGBM được khảo sát bao gồm: learning_rate, 
n_estimators, max_depth, subsample và 
colsample_bytree. Hiệu suất của giải thuật BO-GP 
được đánh giá dựa trên hai tham số chính: n_iter và 
k-fold. Để kiểm tra độ ổn định của giải thuật, hệ số 
phân tán CD% được tính toán bằng cách lặp lại quá 
trình tối ưu hóa 30 lần. Tập dữ liệu phụ tải đỉnh hàng 
ngày từ bang Victoria, Úc được sử dụng trong 
nghiên cứu. Kết quả thực nghiệm làm sáng tỏ tầm 
quan trọng của việc lựa chọn tham số phù hợp cho 
giải thuật BO-GP khi áp dụng trong mô hình 
LightGBM, góp phần nâng cao độ chính xác trong 
dự báo phụ tải. 

2. MÔ HÌNH LGB VÀ GIẢI THUẬT  
BO-GP  

2.1. Mô hình LGB 

LightGBM là một thuật toán do Microsoft 
Research Asia phát triển, dựa trên khung GBDT, 
nhằm cải thiện hiệu quả tính toán để xử lý các bài 
toán dự đoán trên dữ liệu lớn một cách tối ưu hơn. 
Quy trình của thuật toán LightGBM được chia thành 
8 bước cụ thể, như mô tả trong Hình 1 (Zhang & 
Gong, 2020).  LightGBM cải tiến mô hình GBDT so 
với các phiên bản trước bằng cách tích hợp hai kỹ 
thuật quan trọng: Gradient-based One-Side 
Sampling (GOSS) và Exclusive Feature Bundling 
(EFB). GOSS hoạt động dựa trên nguyên tắc rằng 
các gradient lớn chứa nhiều thông tin về sự thay đổi 
của hàm mất mát, do đó mang lại thông tin quan 
trọng hơn. Vì vậy, nó ưu tiên lựa chọn các mẫu có 
gradient lớn, đồng thời lấy ngẫu nhiên một tập hợp 
con các mẫu có gradient nhỏ hơn. Phương pháp này 
tối ưu hóa việc sử dụng dữ liệu mẫu trong quá trình 
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huấn luyện, qua đó cải thiện hiệu suất mô hình. 
Trong khi đó, EFB giúp giảm số lượng đặc trưng 
(features) bằng cách kết hợp các đặc trưng không 
hoạt động đồng thời (mutually exclusive), qua đó tối 
ưu hóa kích thước và hiệu quả xử lý dữ liệu. 

Xác định một hàm mất mát cụ thể
(Define a specific loss function)

Thực hiện lấy mẫu một phía dựa trên gradient
(Perform Gradient-based One-Side Sampling -GOSS)

Sử dụng thuật toán Histogram để xác định điểm phân đoạn tối ưu. 
(Use the Histogram algorithm to identify the optimal 

segmentation point.)

Giảm chiều dữ liệu bằng EFB (Reduce feature dimension by 
Exclusive Feature Bundling-EFB)

Áp dụng thuật toán Leaf-wise với giới hạn độ sâu
(Apply the Leaf-wise algorithm with depth limitation)

Kết hợp các nút lá mà mẫu thuộc về để khớp với phần dư 
(Combine the leaf nodes to which the samples belong to fit the 

residuals)

Chia các nút của cây bằng cách chấm điểm cấu trúc cây (Split the 
nodes of a tree by scoring the tree structure)

Dừng quá trình tăng trưởng và tạo cây quyết định
(Stop the growth and generate the decision tree)

Hình 1. Lưu đồ giải thuật LightGBM 

Giống như các mô hình học máy khác, độ chính 
xác của mô hình LightGBM phụ thuộc một cách 
đáng kể vào các siêu tham số của nó. Các siêu tham 
số chính của mô hình LightGBM là: (Liang et al., 
2021; Vuong & Pham, 2023): 

Learning rate (tốc độ học): Xác định kích thước 
bước tại mỗi lần lặp dựa trên hàm gradient mất mát. 
Tốc độ học thấp hơn giúp mô hình huấn luyện chậm 
hơn nhưng ổn định và có khả năng đạt được tối ưu 
toàn cục. Trong khi đó, tốc độ học cao giúp hội tụ 
nhanh nhưng có nguy cơ dừng lại ở các cực trị địa 
phương. 

Maximum depth (độ sâu tối đa): Một số nguyên 
dùng để kiểm soát khoảng cách tối đa từ nút gốc đến 
nút lá trong cây quyết định. Độ sâu tối đa lớn hơn 
giúp mô hình học được nhiều đặc điểm phức tạp của 
dữ liệu, nhưng cũng làm tăng nguy cơ quá khớp 
(overfitting), khiến mô hình kém hiệu quả khi áp 
dụng cho dữ liệu mới. 

Number of estimators (số lượng cây quyết 
định): Đề cập đến số lượng cây quyết định được sử 
dụng trong mô hình tổng hợp. Số lượng cây lớn hơn 

thường cải thiện hiệu suất dự báo nhưng cũng làm 
tăng thời gian huấn luyện và yêu cầu tài nguyên tính 
toán nhiều hơn. 

Subsample (tỷ lệ mẫu con): Kiểm soát tỷ lệ dữ 
liệu huấn luyện được lấy ngẫu nhiên để phát triển 
mỗi cây. Giá trị nhỏ hơn 1 giúp giảm sự tương quan 
giữa các cây, qua đó cải thiện tính tổng quát của mô 
hình. 

Min_child_weight (trọng số nhỏ nhất của nút 
con): Xác định tổng trọng số nhỏ nhất (hoặc số 
lượng điểm dữ liệu tối thiểu) cần thiết trong một nút 
lá. Giá trị cao hơn giúp mô hình đơn giản hơn, giảm 
nguy cơ quá khớp. 

Colsample_bytree (tỷ lệ đặc trưng được chọn 
cho mỗi cây): Xác định tỷ lệ các đặc trưng (features) 
được chọn ngẫu nhiên cho mỗi cây. Điều này giúp 
giảm sự phụ thuộc vào một số đặc trưng cụ thể và 
cải thiện tính tổng quát. 

Min_child_samples (số lượng mẫu tối thiểu 
trong một nút lá): Quy định số lượng mẫu tối thiểu 
cần có trong một nút lá. Tham số này giúp kiểm soát 
kích thước của nút lá, từ đó tránh việc chia nhỏ quá 
mức và giảm nguy cơ quá khớp. 

Feature_fraction (tỷ lệ đặc trưng): Xác định tỷ 
lệ các đặc trưng được chọn ngẫu nhiên trước khi xây 
dựng mỗi cây quyết định. Tham số này giúp cải 
thiện tính đa dạng của mô hình bằng cách giảm sự 
phụ thuộc vào các đặc trưng cụ thể. 

Bagging_fraction (tỷ lệ mẫu con cho bagging):  
Kiểm soát tỷ lệ dữ liệu huấn luyện được sử dụng 
ngẫu nhiên để xây dựng các cây (dùng cho bagging). 

Max_bin (số lượng bin tối đa cho histogram): 
Xác định số lượng bin tối đa được sử dụng trong 
thuật toán histogram. Nhiều bin hơn có thể tăng độ 
phân giải của dữ liệu, cải thiện độ chính xác, nhưng 
cũng làm tăng thời gian tính toán và yêu cầu bộ nhớ. 

2.2. Giải thuật BO-GP 

Bayesian Optimization (BO) là một thuật toán 
lặp phổ biến dùng để giải quyết các bài toán tối ưu 
hóa siêu tham số. BO dự đoán điểm cần đánh giá 
tiếp theo dựa trên kết quả từ các bước trước đó. BO 
hoạt động dựa trên hai thành phần chính: 

− Mô hình đại diện (Surrogate Model): Xấp xỉ 
hàm mục tiêu bằng cách khớp các điểm dữ liệu đã 
quan sát, từ đó tạo ra một phân phối xác suất cho các 
giá trị mục tiêu. 

− Hàm chọn lựa (Acquisition Function): Quyết 
định cách cân bằng giữa khám phá (exploration) và 
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khai thác (exploitation) khi chọn các điểm dữ liệu 
mới để thử nghiệm. 

Quy trình cơ bản của Bayesian Optimization bao 
gồm các bước sau: 

1. Xây dựng mô hình đại diện xác suất để xấp 
xỉ hàm mục tiêu. 

2. Tìm kiếm giá trị siêu tham số tối ưu bằng 
cách sử dụng hàm chọn lựa. 

3. Áp dụng các giá trị siêu tham số tối ưu vào 
hàm mục tiêu và đánh giá hiệu suất. 

4. Cập nhật mô hình đại diện bằng cách tích hợp 
các quan sát mới nhất. 

5. Lặp lại quá trình trên cho đến khi đạt số vòng 
lặp tối đa hoặc thỏa mãn tiêu chí dừng. 

Gaussian Process (GP) là một mô hình đại diện 
tiêu chuẩn được sử dụng để mô hình hóa hàm mục 
tiêu trong Bayesian Optimization. Khi có tập dữ liệu 
huấn luyện D = {(xi, yi)}𝑖𝑖=1

𝑁𝑁
 , GP có thể ước lượng 

phân phối xác suất có điều kiện của giá trị đầu ra 𝑦𝑦 
dựa trên giá trị đầu vào 𝑥𝑥 và dữ liệu đã quan sát. 



2( | , ) ( | , )p y x D N y µ σ=    (1) 

Trong đó: p (y∣ x, D) là phân phối xác suất có 
điều kiện của biến ngẫu nhiên 𝑦𝑦 với điều kiện dữ liệu 
đã quan sát 𝐷𝐷 và biến đầu vào x, N (y∣𝜇̂𝜇, σ2) là phân 
phối chuẩn Gaussian có 𝜇̂𝜇 là kỳ vọng toán học và σ2 
là phương sai. 

Sau khi có dự đoán từ mô hình GP, các điểm cần 
đánh giá tiếp theo được chọn dựa trên khoảng tin cậy 
của phân phối dự đoán. Mỗi điểm dữ liệu mới được 
kiểm tra thì được thêm vào tập dữ liệu huấn luyện 
và mô hình BO-GP được cập nhật lại với dữ liệu 
quan sát mới để cải thiện dự đoán. Quá trình này lặp 
lại cho đến khi đạt tiêu chí dừng. 

3. MÔ HÌNH ĐỀ XUẤT 

Hình 2 trình bày lưu đồ của giải thuật nhằm đánh 
giá mức độ ảnh hưởng của các tham số trong giải 
thuật BO-GP đối với mô hình LightGBM. Lưu đồ 
bao gồm ba bước chính: xử lý dữ liệu, thực hiện giải 
thuật BO-GP và phân tích kết quả. 

Bước 1: Xử lý dữ liệu 

Dữ liệu phụ tải đỉnh đầu vào được áp dụng chu 
trình cửa sổ trượt (Sliding window procedure) để tạo 
thành các tập dữ liệu input-target (x, y). Chu trình 
cửa sổ trượt được minh hoạ như Hình 3 bên dưới, 
trong đó kích thước cửa sổ (window size) là một 

tham số quan trọng của chu trình, xác định kích 
thước của tập ngõ vào x (Davtyan et al., 2020; 
Papadopoulos et al., 2023).  

Data: 
[y1, y2, …,yn-h, yn-h+1,  yn-h+2,…, yn]
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Hình 2. Lưu đồ giải thuật BO-GP đề xuất 

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12

Input - x

Target - y

Window size

 
Hình 3. Chu trình cửa sổ trượt 

Bước 2: Thực hiện lặp lại n=30 lần giải thuật 
BO-GP.  

Mô hình LightGBM được thiết lập dựa vào các 
siêu tham số cần xác định tối ưu. Trong nghiên cứu 
này, các siêu tham số đại diện được chọn là: 
learning_rate (lr), n_estimators (ne), max_depth 
(md), subsample (sub) và colsample_bytree (col). 
Mô hình LightGBM sau khi được thiết lập đóng vai 
trò là hàm mục tiêu đầu vào cho thuật toán BO-GP, 
nhằm xác định cấu hình siêu tham số tối ưu. 

Các tổ hợp con của tham số n_iter và k-fold được 
xác định và thiết lập trong giải thuật BO-GP. Tham 
số n_iter có I phần tử, tham số k-fold có K phần tử. 
Như vậy có I x K tổ hợp của 2 tham số này. Điều 
này cho phép đánh giá mức độ ảnh hưởng của giải 
thuật BO-GP đối với các tham số n_iter và k-fold. 

Đồng thời, thuật toán BO-GP được thực hiện lặp 
lại 30 lần để đánh giá độ ổn định và tính nhất quán 
của các kết quả tối ưu hóa siêu tham số. Quá trình 
lặp lại này giúp giảm thiểu ảnh hưởng của các yếu 
tố ngẫu nhiên và đảm bảo tính tin cậy của mô hình.  

Ngõ ra của giải thuật BO-GP là giá trị sai số giữa 
giá trị dự đoán và giá trị thực. Trong nghiên cứu này, 
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giá trị sai số là MSE với phương trình được xác định 
như biểu thức (2) dưới đây được sử dụng, trong đó 
y là giá trị thực tế và 𝑦𝑦� là giá trị dự báo: 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛

 ∑ (𝑦𝑦𝑖𝑖 − y�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1          (2) 

Chú ý rằng trong lưu đồ của Hình 2, ngõ ra MSE 
có I x K đại lượng, tương ứng với số tổ hợp của I 
thành phần n_iter và K thành phần k-fold. Mỗi đại 
lượng lại có 30 giá trị, tương ứng với 30 lần lặp. 

Bước 3: Phân tích kết quả.  

Để đánh giá mức độ ngẫu nhiên của sai số MSE 
với 30 lần lặp, hệ số mức độ phân tán của dữ liệu 
CD% được tính toán theo công thức sau (Brown, 
1998): 

100%CD σ
µ

=          (3) 

Trong đó, σ là độ lệch chuẩn (standard 
deviation) và μ là giá trị trung bình (mean) của n=30 
lần lặp. Nếu giá trị CD% vượt quá 30%, thì kết quả 
không ổn định. 

Đồng thời, các biểu đồ thể hiện mối tương quan 
giữa giá trị sai số MSE với các tham số n_iter và k-
fold cũng được thiết lập để đánh giá mức độ ảnh 
hưởng của chúng. 

4. KẾT QUẢ VÀ THẢO LUẬN 
4.1. Dữ liệu và thiết lập thí nghiệm  

Trong nghiên cứu này, dữ liệu phụ tải đỉnh hàng 
ngày (peak load) từ bang Victoria (VIC), Úc 
(https://aemo.com.au) được sử dụng. Dữ liệu được 
chia thành các tập đầu vào x và đầu ra y bằng chu 
trình cửa sổ trượt với kích thước cửa sổ là 7. Bảng 1 
trình bày các đặc điểm thống kê của tập dữ liệu đầu 
ra y, bao gồm: số lượng quan sát, giá trị trung bình, 
độ lệch chuẩn, giá trị nhỏ nhất và giá trị lớn nhất. 
Hình 4 hiển thị biểu đồ dạng sóng của phụ tải y theo 
thời gian từ ngày 10 tháng 10 năm 2021 đến ngày 1 
tháng 1 năm 2022. 

Bảng 1. Đặc tính tập dữ liệu y 
Tham số Count Mean Std Min Max 

Giá trị 84 5332 584 4156 7547 

Bảng 2 trình bày phạm vi giá trị của các siêu 
tham số được khảo sát trong mô hình LightGBM. 
Các tham số này bao gồm: learning_rate, 
n_estimators, max_depth, subsample, và 
colsample_bytree với phạm vi cụ thể được nêu trong 
cột “Phạm vi khảo sát” và kiểu dữ liệu tương ứng 
(kiểu float hoặc integer) trong cột “Kiểu”. Những 

phạm vi và kiểu dữ liệu này cung cấp cái nhìn tổng 
quan về các siêu tham số được xem xét trong quá 
trình tối ưu hóa. 

 
Hình 4. Biểu đồ tập dữ liệu y 

Bảng 2. Giá trị các siêu tham số khảo sát cho mô 
hình Lightgbm 

Siêu tham số Phạm vị khảo sát Kiểu 
learning_rate [0,1-0,3] float 
n_estimators [50-1000] integer 
max_depth [1-16] integer 
subsample [0,1-1,0] float 

colsample_bytree [0,1-1,0] float 

Kết quả thể hiện ở Bảng 3 trình bày phạm vi các 
giá trị của các tham số được khảo sát cho giải thuật 
BO-GP, bao gồm n_iter và k-fold, cùng với số lượng 
tổ hợp tương ứng. Cột “Phạm vi khảo sát” liệt kê các 
giá trị của từng tham số, trong đó các giá trị mặc 
định được làm nổi bật bằng chữ in đậm và gạch chân 
để nhấn mạnh tầm quan trọng của chúng trong các 
thiết lập tiêu chuẩn. Cột “Số tổ hợp” thể hiện tổng 
số tổ hợp tham số được tạo ra từ các giá trị khảo sát, 
với tổng cộng 49 tổ hợp (tương ứng với 7 giá trị của 
n_iter và 7 giá trị của k-fold). 

Bảng 3. Giá trị các tham số khảo sát cho giải 
thuật BO-GP 

Tham số Phạm vị khảo sát Số tổ 
hợp 

n_iter [20, 30, 40, 50, 60, 70, 80] 
49 

k-fold [2, 3, 4, 5, 6, 7, 8] 

4.2. Kết quả và phân tích  
4.2.1. Phân tích sự phân tán trong kết quả 

Hình 5 trình bày biểu đồ phân bố (histogram) của 
sai số MSE cho tổ hợp đầu tiên và tổ hợp cuối cùng, 
tương ứng với 49 tổ hợp như được trình bày trong 
Bảng 3, với mỗi tổ hợp được lặp lại 30 lần để đảm 
bảo tính ổn định của kết quả. Cụ thể, Hình 5a thể 
hiện tổ hợp với tham số n_iter = 20 và k-fold = 2, 
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trong khi Hình 5b thể hiện tổ hợp với tham số n_iter 
= 80 và k-fold = 8. 

Kết quả trong Hình 5 phản ánh rõ tính chất ngẫu 
nhiên của các thuật toán tối ưu hóa qua nhiều lần 
thực thi. Cụ thể, trong Hình 5a, giá trị MSE dao động 
trong khoảng từ 336,000 đến 344,000 MW với tần 
suất xuất hiện từ 1 đến 25 lần. Trong khi đó, ở Hình 
5b, giá trị MSE nằm trong khoảng từ 303,000 đến 
309,000 MW với tần suất từ 1 đến khoảng 9 lần. 
Ngoài ra, các tổ hợp tham số khác được liệt kê trong 
Bảng 3 cũng cho thấy xu hướng tương tự. Do tính 
ngẫu nhiên này, việc chỉ dựa vào một lần chạy duy 
nhất có thể dẫn đến kết quả không đáng tin cậy, làm 
nổi bật sự cần thiết của việc thực hiện nhiều lần lặp 
để đảm bảo tính chính xác và độ ổn định của kết quả. 
Đây là lý do vì sao mỗi tổ hợp trong nghiên cứu đã 
được thực hiện 30 lần lặp để giảm thiểu ảnh hưởng 
của các yếu tố ngẫu nhiên và đảm bảo kết luận có độ 
tin cậy cao. 

a) n_iter =20, k-fold=2

b) n_iter =80, k-fold=8  
Hình 5. Biểu đồ phân bố sai số MSE 

Kết quả ở Hình 6 thể hiện biểu đồ hệ số phân tán 
(CD%) cho các trường hợp khảo sát được liệt kê 
trong Bảng 3. Mỗi điểm trên đồ thị đại diện cho một 
tổ hợp tham số cụ thể. Trong Hình 6, điểm đầu tiên 
biểu thị giá trị CD% cho tổ hợp với tham số n_iter = 
20 và k-fold = 2, trong khi điểm cuối cùng tương 
ứng với tổ hợp n_iter = 80 và k-fold = 8.  

Kết quả phân tích từ Hình 6 cho thấy các hệ số 
phân tán CD% có giá trị rất thấp, phản ánh mức độ 
ổn định cao của các kết quả thu được. Giá trị CD% 
lớn nhất xấp xỉ 3,1%, thấp hơn nhiều so với ngưỡng 

tham chiếu 30%, vốn thường được xem là giới hạn 
chấp nhận trong các nghiên cứu thống kê. Điều này 
cho thấy rằng các giá trị thống kê của sai số MSE có 
mức độ tập trung cao xung quanh giá trị trung bình, 
đồng thời khẳng định tính nhất quán và độ tin cậy 
của kết quả thu được khi áp dụng các tổ hợp tham 
số khác nhau. 

 
Hình 6. Biểu đồ hệ số phân tán CD% 

4.2.2. Đánh giá tác động của các tham số đến 
độ chính xác của thuật toán BP-GP 

Kết quả thể hiện ở Hình 7 cho thấy tỷ lệ lỗi trung 
bình MSE của thuật toán BO-GP theo tham số 
n_iter. Mỗi đường trên biểu đồ tương ứng với một 
giá trị tham số k-fold cụ thể cho từng thuật toán. 
Trong Hình 7, các điểm dữ liệu đại diện cho giá trị 
mặc định của tham số n_iter được làm nổi bật bằng 
các khung đường nét đứt, trong khi các giá trị nhỏ 
nhất của MSE được khoanh tròn để nhấn mạnh hiệu 
suất tối ưu. 

 
Hình 7. Ảnh hưởng của tham số n_iter  

Hiệu suất của mô hình với các giá trị tham số 
mặc định được đánh giá, kết quả từ Hình 7 cho thấy 
rằng các giá trị mặc định tạo ra lỗi MSE cao hơn so 
với các giá trị tối ưu được khảo sát. Cụ thể, đối với 
tham số n_iter trong thuật toán BO-GP, giá trị trung 
bình của sai số MSE có xu hướng giảm dần khi 
n_iter tăng, với mức giảm rõ rệt và ổn định hơn sau 
khi vượt qua giá trị mặc định n_iter = 50 và đạt trạng 
thái bão hòa ở các mức n_iter = 60, 70, và 80. Trong 
đó, giá trị tham số n_iter tối ưu chủ yếu là 80, giúp 
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đạt được hiệu suất tốt nhất và vượt xa hiệu quả so 
với giá trị mặc định là 50.  

Hình 8 trình bày các biểu đồ tương tự như trong 
Hình 7 nhưng được biểu diễn dựa trên các giá trị của 
tham số k-fold để kiểm tra ảnh hưởng của nó đến 
hiệu suất của các thuật toán. Mỗi đường trong biểu 
đồ tương ứng với một giá trị cụ thể của tham số 
n_iter. Các giá trị mặc định của tham số k-fold được 
đánh dấu bằng các khung nét đứt, trong khi các giá 
trị nhỏ nhất của sai số trung bình MSE được làm nổi 
bật bằng các vòng tròn để nhấn mạnh hiệu suất 
 tối ưu. 

 
Hình 8. Ảnh hưởng của tham số k-fold 

Kết quả từ Hình 8 được phân tích cho thấy rằng 
các giá trị mặc định (k-fold = 3) không phải là tối 
ưu, khi so sánh với các giá trị tham số khác. Cụ thể, 
các giá trị k-fold thay thế (không phải giá trị mặc 
định) như 4, 6 và 7 mang lại giá trị trung bình sai số 
MSE thấp hơn đáng kể so với giá trị mặc định. Điều 
này cho thấy rằng hiệu suất của mô hình có thể được 
cải thiện rõ rệt thông qua việc tối ưu hóa tham số k-
fold, thay vì phụ thuộc vào các giá trị mặc định. 
Những phát hiện này nhấn mạnh tầm quan trọng của 
việc hiệu chỉnh tham số để đạt được hiệu quả tối ưu 
trong quá trình huấn luyện mô hình. 

4.2.3. Đánh giá ảnh hưởng của các tham số đối 
với thời gian chạy chương trình. 

Hình 9 trình bày biểu đồ minh họa các đường đặc 
trưng về thời gian thực thi trung bình của các thuật 
toán theo tham số n_iter (Hình 9a) và tham số k-fold 
(Hình 9b). Kết quả được phân tích cho thấy thời gian 
chạy của chương trình tăng gần như tuyến tính theo 
giá trị n_iter, phản ánh mối quan hệ trực tiếp giữa số 
vòng lặp và thời gian xử lý do mỗi vòng lặp bổ sung 
thêm khối lượng tính toán cho quá trình tối ưu hóa. 
Điều này cho thấy rằng khi tăng số vòng lặp, thuật 
toán cần nhiều thời gian hơn để hoàn thành quá trình 
huấn luyện. Trong khi đó, thời gian chạy của chương 
trình hầu như không thay đổi đáng kể khi tham số k-
fold thay đổi. Sự khác biệt nhỏ giữa các giá trị k-
fold cho thấy rằng yếu tố này có ảnh hưởng không 
đáng kể đến thời gian thực thi tổng thể. Điều này có 

thể do quy trình chia tách dữ liệu trong phương pháp 
cross-validation không làm tăng đáng kể khối lượng 
tính toán so với quá trình tối ưu hóa siêu tham số. 
Kết quả này nhấn mạnh rằng, để cải thiện hiệu suất 
tính toán, việc tối ưu số vòng lặp n_iter có tác động 
lớn hơn so với việc điều chỉnh tham số k-fold. 

a) Ảnh hưởng của n_iter

b) Ảnh hưởng của k-fold   
Hình 9. Ảnh hưởng các tham số đối với thời 

gian chạy chương trình. 

5. KẾT LUẬN 

Ảnh hưởng của các tham số n_iter và k-fold 
trong giải thuật BO-GP đối với hiệu suất mô hình 
LightGBM trong bài toán dự báo phụ tải ngắn hạn 
được đánh giá trong nghiên cứu. Kết quả thực 
nghiệm cho thấy, giá trị tối ưu của tham số n_iter 
chủ yếu là 80 thay vì 50 như mặc định, trong khi k-
fold đạt hiệu suất tốt nhất tại 4, 6 và 7 thay vì giá trị 
mặc định là 3. Điều này chứng minh rằng việc lựa 
chọn tham số phù hợp cho các giải thuật tối ưu như 
BO-GP có tác động đáng kể đến độ chính xác của 
mô hình dự báo LightGBM, giúp giảm sai số MSE 
đáng kể so với việc sử dụng giá trị mặc định. Ngoài 
ra, hệ số phân tán CD% thấp chứng tỏ tính ổn định 
cao của các kết quả tối ưu hóa, khẳng định tính tin 
cậy của phương pháp đề xuất. Hướng nghiên cứu 
tiếp theo có thể tập trung vào việc khám phá các mô 
hình tiên tiến hơn như N-Beats hoặc Transformer, 
cũng như khảo sát hiệu quả của các giải thuật tối ưu 
hóa khác như Bayesian Optimization with Tree-
structured Parzen Estimator và Genetic Algorithm 
nhằm nâng cao độ chính xác và tính linh hoạt của 
mô hình trong các bài toán dự báo phức tạp hơn. 
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