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TÓM TẮT 
Nghiên cứu này trình bày một quy trình làm việc để khám phá khoa 
học vật liệu dựa trên dữ liệu thông qua thuật toán học máy (ML) - 
mạng Neural nhân tạo (ANN). Trong đó, tập trung vào việc dự 
đoán năng lượng vùng cấm (Egap) của vật liệu, một tính chất điện 
tử quan trọng trong vật lý chất rắn. Bằng cách sử dụng các kỹ thuật 
học máy có giám sát và tập dữ liệu lớn, mô hình DenseNet được 
tối ưu hóa để dự đoán chính xác giá trị Egap. Nghiên cứu đã chứng 
minh tính hiệu quả của mô hình DenseNet thông qua các chỉ số 
đánh giá như hệ số xác định (R²), sai số tuyệt đối trung bình (MAE) 
và sai số căn quân phương (RMSE). Kết quả cho thấy mô hình đạt 
hiệu suất tốt nhất với R² là 0.7924 trên tập huấn luyện và 0.6682 
trên tập kiểm định. Nghiên cứu này không chỉ đóng góp vào việc 
phát triển các phương pháp tính toán hiệu quả cho khoa học vật 
liệu mà còn mở ra những hướng nghiên cứu mới trong việc khám 
phá và thiết kế vật liệu mới.  

Từ khoá: Năng lượng vùng cấm, máy học, mạng Neural nhân tạo 

ABSTRACT 
In this study, we present a workflow for data-driven materials 
science discovery using a machine learning (ML) algorithm - an 
artificial neural network (ANN). The focus is on predicting the 
energy band gap (Egap) of materials, a key electronic property in 
solid-state physics. By employing supervised machine learning 
techniques and a large dataset, the DenseNet model is optimized 
to accurately predict Egap values. The effectiveness of the DenseNet 
model is demonstrated through evaluation metrics such as the 
coefficient of determination (R²), Mean Absolute Error (MAE), and 
Root Mean Squared Error (RMSE). The results show that the 
model achieves its best performance with an R² of 0.7924 on the 
training set and 0.6682 on the validation set. This research not 
only contributes to the development of efficient computational 
methods for materials science but also opens up new avenues in 
the discovery and design of novel materials. 

Keywords: Energy band gap, machine learning, Artificial neural 
network 
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1. ĐẶT VẤN ĐỀ 

Năng lượng vùng cấm (Egap) là một đặc tính điện 
tử cơ bản của vật liệu, quyết định khả năng ứng dụng 
của chúng trong các thiết bị điện tử và quang điện 
tử. Việc xác định Egap của vật liệu bằng các phương 
pháp khác nhau, chẳng hạn như tính toán lý thuyết 
phiếm hàm mật độ (DFT) và mô hình học máy (ML) 
đã được sử dụng để dự đoán Egap với độ chính xác 
cao; đóng vai trò then chốt trong việc thiết kế và phát 
triển các thiết bị tiên tiến, đặc biệt là trong lĩnh vực 
năng lượng tái tạo và công nghệ bán dẫn (Mondal et 
al., 2023; Lin et al., 2023). Tuy nhiên, việc đo đạc 
Egap bằng thực nghiệm thường tốn kém, phức tạp và 
mất nhiều thời gian (Manzotti et al., 2022). Nghiên 
cứu về các siêu mạng quang điện tử cho thấy vùng 
cấm truyền dẫn rộng hơn trong các cấu trúc phức 
tạp, mở ra tiềm năng cho các bộ lọc năng lượng 
chính xác và các thiết bị quang điện tử (Wang et al., 
2022). Mặt khác, các phương pháp tính toán lý 
thuyết, mặc dù có độ chính xác cao nhưng lại đòi hỏi 
nguồn lực tính toán lớn và thường chỉ giới hạn trong 
các hệ vật liệu đơn giản (Chowdhury et al., 2022). 

Trong bối cảnh đó, sự tiến bộ của khoa học dữ 
liệu và học máy (ML) đã thực sự cách mạng hóa việc 
dự đoán các đặc tính vật liệu như năng lượng vùng 
cấm (Egap) bằng cách tận dụng mạng Neural nhân 
tạo (ANN) để phân tích các tập dữ liệu lớn và cấu 
trúc vật liệu phức tạp (Askanazi & Grinberg, 2023). 
Các mô hình ML, đặc biệt là ANN, vượt trội trong 
việc nắm bắt các mối quan hệ phức tạp giữa cấu trúc 
và tính chất của vật liệu, cho phép dự đoán Egap 
chính xác và hiệu quả mà không cần các thí nghiệm 
tốn kém hoặc các tính toán lý thuyết phức tạp 
(Smith., 2023). ANN là một mô hình máy học (ML), 
được xây dựng mô phỏng theo nguyên lý sinh học 
của bộ não con người (Cole, 2020). Chính vì vậy 
thuật toán ANN có khả năng xử lý song song với tốc 
độ xử lý nhanh, có khả năng dạy học thích nghi, nó 
thích ứng trong quá trình tự điều chỉnh trong điều 
chỉnh tự động. Đặc biệt, ANN có thể học hỏi từ dữ 
liệu để xử lý các bài toán phi tuyến. Mặc dù có 
những thách thức do tính không thể giải thích (the 
black-box nature) của các mô hình ML, nghiên cứu 
gần đây nhấn mạnh tầm quan trọng của việc hiểu độ 
tin cậy của các dự đoán ML, đặc biệt là đối với các 
tập dữ liệu nhỏ chiếm ưu thế hơn so với các tập dữ 
liệu lớn, độ tin cậy và độ chính xác của các mô hình 
dự đoán cho các tập dữ liệu lớn có thể được tăng 
cường bằng cách xây dựng bao lồi (constructing 
convex hulls) trong không gian đặc trưng (Askanazi 
et al., 2023). Tiến bộ này nhấn mạnh tiềm năng của 
ML trong việc thúc đẩy khám phá và đổi mới vật 

liệu, đặc biệt là trong các lĩnh vực như lưu trữ năng 
lượng, xúc tác, điện tử. Điều này cho phép dự đoán 
Egap của các vật liệu mới mà không cần thực hiện các 
thí nghiệm tốn kém hay tính toán lý thuyết phức tạp. 

Trong các thuật toán ANN, mô hình DenseNet 
được biết đến với các kết nối dày đặc tạo điều kiện 
cho việc học các đặc trưng ở các mức độ trừu tượng 
khác nhau, đã cho thấy tiềm năng trong các lĩnh vực 
khác nhau như cảm biến và nhận dạng hoạt động 
(Liu et al., 2023). Tiềm năng của nó mở rộng đến 
việc dự đoán Egap của vật liệu, được chứng minh 
bằng hiệu quả cao và vượt trội hơn các mô hình khác 
như ResNet (Irawan et al., 2022; Hu et al., 2023). 
Với khả năng này, DenseNet có tiềm năng trở thành 
một công cụ mạnh mẽ trong việc dự đoán Egap của 
vật liệu. 

 
Hình 1. Trực quan hóa thuật toán mạng Neural 

nhân tạo 

Mặc dù đã có nhiều nghiên cứu về ứng dụng học 
máy trong khoa học vật liệu, tuy nhiên việc tiếp cận 
phương pháp học sâu – mạng Neural nhân tạo (Deep 
Neural Network – Hình 1) để dự đoán Egap vẫn còn 
là một cách tiếp cận mới và đầy hứa hẹn. Do đó, 
nghiên cứu này nhằm mục đích khám phá tiềm năng 
của mô hình DenseNet trong phương pháp học sâu 
nhằm đánh giá khả năng dự đoán Egap của vật liệu 
trên mô hình đã đào tạo. Mô hình DenseNet sẽ được 
huấn luyện và tối ưu hóa trên một tập dữ liệu lớn về 
vật liệu, sau đó mô hình được đánh giá hiệu suất 
thông qua các chỉ số thống kê như hệ số xác định 
(R²), sai số tuyệt đối trung bình (MAE) và sai số căn 
quân phương (RMSE). Nghiên cứu này không chỉ 
góp phần mở rộng ứng dụng của DenseNet trong 
lĩnh vực khoa học vật liệu mà còn cung cấp một 
công cụ hữu ích cho việc thiết kế và khám phá vật 
liệu mới. 
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2. KHUNG QUY TRÌNH HỌC MÁY 
MẠNG NEURAL NHÂN TẠO DỰA 
TRÊN THUẬT NGỮ HỌC TẬP SÂU 

Trong đề tài này, một khung thuật toán cho mạng 
lưới thần kinh đơn giản được đề xuất và triển khai 
thành công để mô hình hóa dữ liệu năng lượng vùng 
cấm (Egap) bằng phương pháp học sâu có giám sát. 

 
Hình 2.1. Khung thuật toán mạng Neural nhân 
tạo đề xuất đào tạo dữ liệu Egap bằng phương 

pháp học sâu có giám sát 

Khung quy trình thuật toán của mô hình 
DenseNet được đề xuất nhằm đạt hiệu suất tốt hơn 
ANN truyền thống trong các tác vụ học, ở các đặc 
điểm: 

• Tạo vector thành phần (tiếp cận CBFV): 
bước đặc trưng của quy trình DenseNet, không có 
trong quy trình ANN truyền thống. CBFV được tiếp 
cận để chuyển đổi thông tin về thành phần hóa học 
của vật liệu thành một vector đặc trưng, làm đầu vào 
cho mô hình. 

• Xác định và truy cập mạng PyTorch: 
khung quy trình đề xuất chỉ rõ việc sử dụng PyTorch 
- một framework học sâu phổ biến hiện nay, để xây 
dựng và huấn luyện mô hình DenseNet. 

• Khởi tạo mô hình DenseNet: thay vì khởi 
tạo một mô hình ANN truyền thống, quy trình này 
khởi tạo một mô hình DenseNet. 

Quá trình xây dựng chương trình thuật toán chia 
làm 5 bước cơ bản: 

Bước 1: Kiểm tra thư viện 

Bước 2: Truy xuất và xử lý dữ liệu 

Bước 3: Phân tách dữ liệu 

Bước 4: Thiết lập mô hình mạng Neural nhân tạo 

Bước 5: Đánh giá lại hiệu suất mô hình trên tập 
dữ liệu thử nghiệm 

2.1. Kiểm tra thư viện 

Trước tiên, quá trình xây dựng mô hình ML 
trong ngôn ngữ lập trình Python cần một số thư viện 
chính, chính những nguồn thư viện này giúp hỗ trợ 
tốt hơn cho thực thi mô hình. Quá trình kiểm tra thư 
viện nhằm đảm bảo trong quá trình hoạt động thư 
viện đã được cài đặt trước, giúp cho mô hình hoạt 
động tốt hơn. Một lưu ý khi cài đặt và sử dụng thư 
viện cho các dự án ML là một phân vùng môi trường 
riêng cần được tạo cho dự án đó. Dưới đây là kết quả 
của các thư viện cho quá trình cài đặt và thông báo 
trước khi tiến hành xây dựng mô hình ML tiên đoán 
Egap:  

[ OK ] numpy version 1.18.5 

[ OK ] pandas version 1.0.5 

[ OK ] matplotlib version 3.2.2 

[ OK ] seaborn version 0.10.1 

[ OK ] sklearn version 0.22.2.post1 

[ OK ] scipy version 1.7.3 

[ OK ] tqdm version 4.66.1 

[ OK ] jupyter_client version 7.4.9 

[ OK ] ipywidgets version 8.1.1 

[ OK ] torch version 1.3.1 
2.2. Truy xuất và xử lý dữ liệu 

Bước đầu tiên của một việc xây dựng mô hình 
học máy là chọn tập dữ liệu ta sẽ thực hiện đào tạo. 
Có nhiều kho lưu trữ dữ liệu dành riêng cho khoa 
học vật liệu. Sử dụng gói thư viện Pandas với thao 
tác pd.read_csv() để đọc dữ liệu đầu vào từ tệp excel 
vào khung dữ liệu. Dữ liệu đầu vào có 19039 mẫu 
được chia ra thành 2 cột tương ứng là: [‘formula’, 
‘target’]. Cột formula là cột công thức hoá học của 



Tạp chí Khoa học Đại học Cần Thơ   Tập 60, Số chuyên đề: Khoa học tự nhiên (Toán-Lý) (2024): 142-149 

145 

các mẫu nghiên cứu, cột target là cột tương ứng với 
giá trị Egap. 

Bảng 2.1. Dữ liệu đầu vào từ tập dữ liệu Egap  

 
Quá trình thu thập dữ liệu từ các nguồn khác 

nhau với dữ liệu thu thập đều là dữ liệu tiền xử lý 
(dữ liệu chưa qua làm sạch của các tính toán mô 
phỏng hoặc lý thuyết), do đó, tập dữ liệu có thể có 
những sai sót hoặc lỗi trong quá trình nhập liệu hoặc 
tính toán dẫn đến các giá trị Egap hoặc công thức hóa 
học không hợp lệ. Việc loại bỏ các giá trị không phù 
hợp này trong quá trình làm sạch dữ liệu là cần thiết 
để đảm bảo tính chính xác và độ tin cậy của kết quả 
nghiên cứu. 

Các cấu trúc hóa học có giá trị Egap âm, không 
phải số (NaN) hoặc trùng lặp được thực hiện loại bỏ 
(làm sạch). Sau quá trình xử lý dữ liệu, dữ liệu được 
tiến hành lưu dưới dạng tập .csv cho bước tiếp theo. 
Thư viện Pandas được sử dụng cho phép lưu dữ liệu 
dưới dạng tệp .csv thông qua cú pháp: df.to_csv(). 
Ban đầu dữ liệu là 19039, sau quá trình xử lý dữ liệu, 
thu được dữ liệu với 9609 mẫu tương ứng với 2 cột 
’formula’ và ’target’. 

2.3. Phân tách dữ liệu 

Từ dữ liệu đã làm sạch, thông thường, dữ liệu 
chỉ cần được phân chia bằng hàm sklearn. Hàm 
scikit-learn train_test_split chia ngẫu nhiên một tập 
dữ liệu thành tập dữ liệu huấn luyện và tập dữ liệu 
kiểm tra. 

Bảng 2.2. Thông số phân tách tập dữ liệu Egap đã 
làm sạch 

 train 
split 

validation 
split 

test 
split 

Tỷ lệ phân tách 
tập dữ liệu (%) 70 20 10 

Lượng data tương 
ứng (data) 6726 1922 961 

Ở đây chương trình train_test_split được sử 
dụng để phân chia dữ liệu của mình thành các tập dữ 
liệu "đào tạo" và "kiểm tra" trước tiên, sau đó hàm 

này được sử dụng lại để phân chia tiếp tục dữ liệu 
"đào tạo" thành các tập dữ liệu "đào tạo" và "xác 
thực". 

2.4. Thiết lập mô hình mạng Neural nhân tạo  

Khi tiến hành xây dựng mô hình học sâu, các thư 
viện cần thiết cần được khai báo, sau đó là các tập 
dữ liệu đầu vào train-val-test đã được phân tách 
được đọc. Tiếp theo, mô hình học sâu được xây 
dựng theo dữ liệu: 

• Train data: bao gồm các dữ liệu được đào tạo 
trực tiếp để xây dựng mô hình. 

• Test data: gồm các dữ liệu được dùng để 
đánh giá hiệu quả mô hình. Dữ liệu thử nghiệm là 
điều kiện cần để một mô hình hiệu quả là kết quả 
đánh giá trên cả train và test đều cao. 

• Val data: được sử dụng trong việc lựa chọn 
các siêu tham số mô hình. Một mô hình hoạt động 
hiệu quả trên dữ liệu train chưa chắc đã hoạt động 
hiệu quả trên dữu liệu test. Để tăng hiệu quả của mô 
hình trên dữ liệu test, một tập dữ liệu nữa được gọi 
là tập dữ liệu xác thực (val) cần được dùng thêm.  

Xây dựng mô hình mạng Neural nhân tạo bằng 
phương pháp học sâu có giám sát. Việc lựa chọn mô 
hình ML rất quan trọng, các mô hình sẽ quyết định 
đến xu hướng phát triển và dự đoán dữ liệu cũng như 
tính hiệu quả của mô hình cho việc dự đoán.  

Mô hình được đào tạo thông qua việc tạo các 
vector đặc trưng thành phần bằng tiếp cận CBFV 
(Composition-Based Feature Vectorization). CBFV 
là một công cụ mạnh mẽ trong khoa học vật liệu tính 
toán, đặc biệt là trong các ứng dụng học máy. Nó 
cho phép chuyển đổi thông tin về thành phần hóa 
học của vật liệu thành một vector đặc trưng (feature 
vector) đại diện cho vật liệu đó (Yadav et al., 2024). 
Vectơ đặc trưng này chứa thông tin về các thuộc tính 
của các nguyên tố cấu thành nên vật liệu, chẳng hạn 
như số hiệu nguyên tử, khối lượng nguyên tử, độ âm 
điện, bán kính nguyên tử, và các thông tin khác. Các 
đặc trưng này được tính toán dựa trên các tính chất 
của các nguyên tố trong bảng tuần hoàn và có thể 
được sử dụng làm đầu vào cho các mô hình học máy 
để dự đoán các tính chất của vật liệu. Cụ thể trong 
nghiên cứu này, vectơ đặc trưng CBFV được sử 
dụng làm đầu vào cho mô hình DenseNet để dự đoán 
Egap. 

Trong lĩnh vực học sâu, epoch là thông số đại 
diện cho một lần duyệt qua toàn bộ tập dữ liệu huấn 
luyện trong quá trình đào tạo mô hình. Nó đóng vai 
trò quan trọng trong việc xác định hiệu suất của mô 
hình bằng cách giúp ngăn ngừa tình trạng quá khớp 
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(overfitting) hoặc kém khớp (underfitting) dữ liệu. 
Số lượng epoch được chọn để huấn luyện là một siêu 
tham số ảnh hưởng đến quá trình học và khả năng 
khái quát hóa của mô hình (Niharika et al., 2013; 
Cui et al., 2022).  

 
Hình 2.2. Quy trình huấn luyện (training 

procedure) cho một mạng Neural nhân tạo 
(neural network) 

Các nhà nghiên cứu đã khám phá những phương 
pháp sáng tạo như “Học tập theo quy trình Gaussian 
Tiến hóa Epoch (GPGL)” của Jiabao Cui et al. 
(2022), các tác giả đề xuất một phương pháp học 
máy mới, trong đó mô hình GP (Gaussian Process) 
được sử dụng để hướng dẫn quá trình cập nhật trọng 
số của mạng Neural nhân tạo. Mô hình GP này 
không cố định mà "tiến hóa" qua từng epoch, nghĩa 
là nó liên tục cập nhật và điều chỉnh để phù hợp hơn 
với dữ liệu huấn luyện (Cui et al., 2022). Hiểu rõ và 
tối ưu hóa tham số epoch là điều cần thiết để đạt 
được hiệu suất và độ chính xác tối ưu trong các 
nhiệm vụ học sâu (Saahil et al., 2020). Trong đề tài 
này, quá trình huấn luyện được thực hiện với tối đa 
là 500 epoch.  

Đồng thời, hiệu chỉnh mô hình bằng cách sử 
dụng tập dữ liệu kiểm định (validation set) là một 
kỹ thuật phổ biến trong học máy để tránh overfitting 
(quá khớp) và đảm bảo khả năng khái quát hóa của 
mô hình. Các nghiên cứu trước đây đã chứng minh 
tính hiệu quả của phương pháp này trong nhiều lĩnh 
vực, bao gồm cả khoa học vật liệu (Faber et al., 
2017). 

2.5. Đánh giá lại hiệu suất mô hình trên tập 
dữ liệu thử nghiệm 

Sau khi mô hình DenseNet được huấn luyện 
xong, hiệu suất của mô hình trên tập dữ liệu thử 
nghiệm (test dataset) được đánh giá để đảm bảo 
rằng mô hình có khả năng khái quát hóa tốt cho dữ 
liệu mới, chưa từng được nhìn thấy trong quá trình 
huấn luyện và quá trình hiệu chỉnh. 

3. KẾT QUẢ VÀ THẢO LUẬN 

Các mô hình trong Hình 3.1 được huấn luyện 
trên dữ liệu Egap đầu vào, với 70% dữ liệu được sử 
dụng để huấn luyện, 20% để kiểm tra và 10% để xác 
thực. Trục tung và trục hoành lần lượt biểu diễn giá 
trị Egap dự đoán và giá trị Egap thực tế. Đường đứt nét 
màu đen là đường lý tưởng của mô hình, đường nét 
liền màu cam là đường khớp dữ liệu của mô hình. 
Sự khớp giữa hai đường này càng cao, mô hình càng 
chính xác. 

Số liệu của các mô hình có thể được quan sát ở 
Bảng 3.1. Mô hình DenseNet thể hiện khả năng dự 
đoán tốt với R² trên tập huấn luyện (R²_train) và tập 
kiểm định (R²_val) đều tăng dần theo số epoch. Điều 
này cho thấy mô hình đang học và cải thiện khả năng 
dự đoán qua quá trình huấn luyện. Giá trị R² đạt giá 
trị cao nhất là 0.7924 trên tập huấn luyện và 0.6682 
trên tập kiểm định ở epoch 420-440, cho thấy mô 
hình có khả năng khái quát hóa tốt. MAE trên cả hai 
tập dữ liệu giảm dần, đặc biệt là trong giai đoạn đầu 
của quá trình huấn luyện (epoch 0-100). Điều này 
cho thấy mô hình đang giảm thiểu sai số dự đoán 
trung bình. Tương tự MAE, RMSE cũng giảm dần, 
chỉ ra rằng mô hình đang giảm thiểu độ lệch giữa giá 
trị dự đoán và giá trị thực. Trong quá trình huấn 
luyện, mô hình dường như hội tụ sau khoảng 200 
epoch, khi các chỉ số R², MAE và RMSE đã bão hòa 
và hầu như không cải thiện đáng kể sau đó. 
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Hình 3.1. Mô hình DenseNet dự đoán cho giá trị Egap 

Bảng 3.1. Số liệu mô hình đã được đào tạo trong quá trình huấn luyện  
Model 

Training epoch R2_train MAE 
_train 

RMSE 
_train R2_val MAE 

_val 
RMSE 

_val 
a 0 -0.0944 1.2884 1.6556 -0.0846 1.2419 1.6028 
b 20 - 40 0.7438 0.5653 0.8011 0.6906 0.6441 0.8560 
c 60 - 80 - 100 0.7616 0.5340 0.7727 0.6921 0.6318 0.8541 
d 120 - 140 0.7724 0.5172 0.7550 0.6960 0.6279 0.8486 
e 160 - 180 - 200 0.7766 0.5068 0.7480 0.6902 0.6297 0.8566 
f 220 - 240 0.7856 0.4992 0.7328 0.6950 0.6266 0.8499 
g 260 - 280 - 300 0.7875 0.4944 0.7295 0.6839 0.6413 0.8652 
h 320 - 340 0.7854 0.4942 0.7332 0.6799 0.6406 0.8707 
i 360 - 380 - 400 0.7856 0.4982 0.7328 0.6860 0.6378 0.8625 
j 420 - 440 0.7924 0.4777 0.7211 0.6682 0.6469 0.8865 

Giờ đây, với mạng Neural nhân tạo đã được huấn 
luyện, hiệu suất của mô hình (khi kết thúc giai đoạn 
huấn luyện) có thể được đánh giá trên tập dữ liệu 
xác thực (Hình 3.2). Dựa trên các dữ liệu đã xử lý, 
bởi chương trình cụ thể:  
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Mô hình DenseNet cuối cùng (Hình 3.2) được 
đưa ra với hiệu suất đạt xấp xỉ 67% bằng việc đào 
tạo các dữ liệu đầu vào của Egap với 70% cho dữ liệu 
đào tạo, 20% cho dữ liệu thử nghiệm và 10% cho dữ 
liệu xác thực. Các điểm dữ liệu có xu hướng phân 
tán đồng đều và đối xứng quanh đường tuyến tính lý 
tưởng. 

 
Hình 3.2. Mô hình DenseNet cuối cùng được 
đánh giá trên tập dữ liệu xác thực (val data) 

Cuối cùng, mô hình lên tập dữ liệu thử nghiệm 
(Hình 3.3) được đánh giá hiệu suất, cụ thể bằng 
chương trình: 

 
Thông qua việc đánh giá hiệu năng bằng dữ liệu 

thử nghiệm (20%) cho thấy hiệu năng của mô hình 
tăng cao hơn so với dữ liệu xác thực (10%). Hiệu 
suất lúc này đạt xấp xỉ 72%, khẳng định rằng mô 
hình phù hợp với dữ liệu Egap và khả năng dự đoán 
tốt của mô hình với dữ liệu train-test-val (70%-20%-
10%) và tối đa là 500 epoch. Nghiên cứu đã đưa ra 
mô hình dự đoán tốt cho Egap bằng phương pháp học 
sâu – mạng Neural nhân tạo đồng thời đề xuất khung 
quy trình thuật toán cụ thể. 

 
Hình 3.3. Mô hình đánh giá hiệu suất trên tập 

dữ liệu thử nghiệm (test data) 

4. KẾT LUẬN 

Nghiên cứu này đã trình bày tổng quan khoa học 
vật liệu, phương pháp học máy cũng như các kỹ 
thuật xây dựng mô hình để tiên đoán giá trị Egap cho 
vật liệu, đồng thời đã đạt được một số kết quả khả 
quan sau. 

• Thứ nhất, mô hình ML được dựng lại gồm 
các bước: kiểm tra các thư viện trong chương trình 
tính toán, truy vấn, xử lý và tổ chức hiển thị mô hình 
với hiệu suất làm việc của từng mô hình cũng như là 
sai số tuyệt đối trung bình và sai số căn quân 
phương. 

• Thứ hai, mô hình ML mạng Neuron nhân tạo 
được xây dựng thành công để dự đoán giá trị Egap.  

• Thứ ba, mô hình đạt hiệu suất tốt nhất với R² 
là 0.7924 trên tập huấn luyện và 0.6682 trên tập 
kiểm định (Hình 3.1-j). 

Với các kết quả đạt được, nghiên cứu này giúp 
mở ra thêm một tài liệu tham khảo ML khi nghiên 
cứu các vật liệu khối, xây dựng quy trình học cũng 
như các kỹ thuật đặc trưng cho vật liệu. Bên cạnh 
đó, kết quả cũng mở ra một hướng nghiên cứu năng 
lượng vùng cấm bằng phương pháp học sâu đầy 
triển vọng; từ đó giúp tiên đoán các trị năng lượng 
vùng cấm, đánh giá chung dữ liệu, phân tích giá trị 
năng lượng và sử dụng giá trị đó cho lần học dữ liệu 
tiếp theo. 
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