
Tạp chí Khoa học Đại học Cần Thơ Tập 60, Số 5A (2024): 59-68

59

DOI:10.22144/ctujos.2024.426

ĐÁNH GIÁ CÁC THUẬT TOÁN LỌC HIỆU QUẢ TRONG XỬ LÝ DỮ LIỆU LỚN
Phan Thượng Cang*, Trần Thị Tố Quyên và Triệu Thanh Ngoan
Trường Công nghệ Thông tin và Truyền thông, Trường Đại học Cần Thơ, Việt Nam
*Tác giả liên hệ (Corresponding author): ptcang@ctu.edu.vn

Thông tin chung (Article Information)

Nhận bài (Received): 05/06/2024
Sửa bài (Revised): 24/06/2024
Duyệt đăng (Accepted): 22/09/2024

Title: Evaluating effective filtering
algorithms in big data processing

Author(s): Phan Thuong Cang*, Tran
Thi To Quyen and Trieu Thanh Ngoan

Affiliation(s): College of Information
and Communication Technology, Can
Tho University, Viet Nam

TÓM TẮT
Việc xử lý và phân tích dữ liệu nhanh chóng, hiệu quả trong kỷ nguyên
dữ liệu lớn là thách thức quan trọng. Các thuật toán lọc giúp tăng hiệu
suất xử lý dữ liệu lớn bằng cách loại bỏ dữ liệu không liên quan, giảm
chi phí tính toán, rút ngắn thời gian xử lý truy vấn. Nghiên cứu này đánh
giá hiệu năng của 5 thuật toán lọc phổ biến bao gồm Bloom Filter,
Cuckoo Filter, Quotient Filter, Morton Filter và Vacuum Filter trong
môi trường Apache Spark. Thông qua thực nghiệm trên các tập dữ liệu
lớn, kết quả cho thấy Quotient Filter hiệu quả nhất về lưu trữ, Cuckoo
Filter thể hiện sự cân bằng tốt giữa tốc độ chèn, tìm kiếm và xóa. Bloom
Filter phù hợp với dữ liệu tĩnh, Morton Filter nổi trội về tốc độ tìm kiếm,
Vacuum Filter có thời gian chèn chậm nhưng tìm kiếm và xóa nhanh.
Việc kết hợp các thuật toán này với Apache Spark giúp cải tiến đáng kể
hiệu suất xử lý nhờ khả năng phân tán và song song. Kết quả nghiên cứu
cung cấp lựa chọn thuật toán lọc phù hợp và chỉ ra tiềm năng ứng dụng
hiệu quả các thuật toán lọc trong xử lý dữ liệu quy mô lớn.

Từ khóa: Apache Spark, Bloom Filter, Cuckoo Filter, Morton Filter,
Quotient Filter, Vacuum Filter

ABSTRACT
Handling and analyzing data quickly and efficiently in the era of big
data is a significant challenge. Filtering algorithms enhance the
performance of big data processing by eliminating irrelevant data,
reducing computational costs, and shortening query processing times.
This study evaluates the performance of five popular filtering
algorithms: Bloom Filter, Cuckoo Filter, Quotient Filter, Morton
Filter, and Vacuum Filter in an Apache Spark environment. Through
experiments on large datasets, the results show that the Quotient Filter
is the most efficient in terms of storage, the Cuckoo Filter
demonstrates a good balance between insertion, search, and deletion
speeds. The Bloom Filter is suitable for static data, the Morton Filter
excels in search speed, and the Vacuum Filter has a slow insertion
time but fast search and deletion times. Integrating these algorithms
with Apache Spark significantly improves processing performance
thanks to its distributed and parallel capabilities. The study results
provide guidance on selecting suitable filtering algorithms and
highlight the potential for effectively applying filtering algorithms in
large-scale data processing.

Keywords: Apache Spark, Bloom Filter, Cuckoo Filter, Morton Filter,
Quotient Filter, Vacuum Filter

Tạp chí Khoa học Đại học Cần Thơ Tập 60, Số 5A (2024): 59-68

60

1. GIỚI THIỆU

Trong kỷ nguyên dữ liệu lớn, việc xử lý và phân
tích dữ liệu nhanh chóng và hiệu quả là thách thức
lớn (Kumar et al., 2023). Khả năng lọc và truy xuất
thông tin liên quan từ tập dữ liệu khổng lồ trở nên
quan trọng trong nhiều ứng dụng như khai phá dữ
liệu, học máy, phân tích thời gian thực và hỗ trợ ra
quyết định. Vì vậy, nghiên cứu và tối ưu hóa các
thuật toán lọc đã thu hút sự quan tâm lớn của cộng
đồng khoa học và chuyên gia ngành. Các thuật toán
lọc giúp cải thiện đáng kể hiệu suất xử lý dữ liệu lớn
bằng cách loại bỏ dữ liệu không liên quan hoặc dư
thừa, giảm chi phí tính toán và rút ngắn thời gian
truy vấn (Li, 2021). Hiệu quả của chúng tác động
trực tiếp tới hiệu năng tổng thể và khả năng mở rộng
của hệ thống xử lý dữ liệu lớn, khiến việc tối ưu hóa
thuật toán lọc trở thành lĩnh vực nghiên cứu quan
trọng (García et al., 2016). Các thuật toán lọc phổ
biến như Bloom Filter, Cuckoo Filter, Quotient
Filter, Morton Filter và Vacuum Filter đều có ưu
nhược điểm riêng về hiệu quả lưu trữ, tốc độ chèn
và truy vấn, tỷ lệ dương tính giả và khả năng thích
ứng với đặc tính dữ liệu khác nhau. Việc hiểu rõ sự
đánh đổi của từng thuật toán và lựa chọn giải pháp
phù hợp cho từng bài toán cụ thể là rất quan trọng
để tối ưu hóa hiệu suất xử lý.

Bên cạnh đó, sự phát triển của các framework
tính toán phân tán như Apache Spark đã tạo ra cuộc
cách mạng trong xử lý dữ liệu lớn thông qua việc
cho phép thực thi song song và phân tán các thuật
toán lọc trên cụm máy tính lớn. Tích hợp các thuật
toán lọc với các framework này hứa hẹn tăng tốc
đáng kể tốc độ xử lý và khả năng xử lý khối lượng
dữ liệu ngày càng tăng. Tuy nhiên, việc đánh giá và
phân tích hiệu năng của các thuật toán lọc trong môi
trường phân tán là cần thiết do sự khác biệt với môi
trường truyền thống. Nhiều nghiên cứu gần đây đã
tập trung vào ứng dụng và cải tiến các bộ lọc cấu
trúc dữ liệu xác suất trong nhiều lĩnh vực khác nhau.
Maulana et al. (2023) đề xuất sử dụng bộ lọc Bloom,
Xor và Cuckoo để tối ưu hóa truy vấn cơ sở dữ liệu
cho doanh nghiệp vừa và nhỏ. Ezzaki et al. (2020)
cung cấp tổng quan về các biến thể của bộ lọc
Bloom. Burdakov et al. (2019) áp dụng Bloom Filter
Cascade trên Spark để tối ưu truy vấn SQL. Một số
nghiên cứu khác tập trung vào bài toán tìm kiếm và
kết hợp tương đồng chuỗi sử dụng các phương pháp
lọc (Chaudhuri et al., 2006; Yu et al., 2016; Yan et
al., 2017; Fier et al., 2018; Tran et al., 2020; Li,
2021). Các nghiên cứu này chỉ ra sự phát triển tích
cực và tiềm năng ứng dụng rộng rãi của các phương
pháp lọc dữ liệu.

 Nghiên cứu này nhằm giải quyết nhu cầu cấp
thiết về đánh giá và so sánh toàn diện hiệu năng của
các thuật toán lọc khác nhau trong bối cảnh xử lý dữ
liệu lớn. Thông qua thử nghiệm và so sánh mở rộng,
việc đánh giá ưu nhược điểm của từng thuật toán và
sự phù hợp của chúng trong các tình huống cụ thể
được thực hiện; đồng thời, nghiên cứu tác động của
việc tích hợp các thuật toán này với Apache Spark,
chỉ ra tiềm năng cải thiện hiệu suất đáng kể thông
qua xử lý song song và phân tán. Những đóng góp
chính của bài báo bao gồm: (1) tổng quan và phân
tích toàn diện về 5 thuật toán lọc gồm Bloom Filter,
Cuckoo Filter, Quotient Filter, Morton Filter và
Vacuum Filter; (2) đánh giá hiệu năng thực nghiệm
của các thuật toán trên tập dữ liệu thực tế; (3) phân
tích ảnh hưởng của việc tích hợp các thuật toán với
Apache Spark tới khả năng cải thiện hiệu suất; (4)
đưa ra hướng dẫn lựa chọn thuật toán lọc phù hợp
dựa trên yêu cầu và đặc điểm dữ liệu của ứng dụng.
Các kết quả của nghiên cứu hứa hẹn giúp các chuyên
gia tối ưu hóa quy trình xử lý dữ liệu lớn.

2. CƠ SỞ LÝ THUYẾT
2.1. Bloom Filter

Bộ lọc Bloom (Lu et al., 2005) được giới thiệu
bởi Burton Howard Bloom vào năm 1970, là một
cấu trúc dữ liệu xác suất (PDS) được sử dụng rộng
rãi trong lĩnh vực truy xuất và lưu trữ thông tin. Bộ
lọc này dùng để kiểm tra tư cách thành viên của một
phần tử trong tập hợp, xác nhận chắc chắn về việc
không phải là thành viên và tư cách thành viên được
suy ra theo xác suất với một sai số có thể tính toán
được, gọi là tỷ lệ dương tính giả. Bộ lọc Bloom sử
dụng một mảng B gồm m bit và một tập hợp S =
x1,x2,x3,...,xn gồm n phần tử. Ngoài ra, k hàm băm
h1,h2,...,hk được dùng để ánh xạ mỗi phần tử trong
S thành m vị trí trong mảng B, với k được tính bằng
công thức k = (m/n)log(2). Ban đầu, tất cả các bit
trong mảng B được đặt bằng 0.

Thuật toán 1: Bloom Filter
procedure Initialize(m, k)
 B ← array of m bits, all set to 0
 H ← array of k hash functions
end procedure
procedure Add(x)
 for i ← 1 to k do
 position ← Hi(x) mod m
 B[position] ← 1
 end for
end procedure
procedure Query(x)
 for i ← 1 to k do

Tạp chí Khoa học Đại học Cần Thơ Tập 60, Số 5A (2024): 59-68

61

 position ← Hi(x) mod m
 if B[position] = 0 then
 return False
 end if
 end for
 return True
end procedure

2.2. Cuckoo Filter

Bộ lọc Cuckoo (Fan et al., 2014) là một cấu trúc
dữ liệu mạnh mẽ cho các truy vấn về tư cách thành
viên tập hợp gần đúng, mang lại nhiều ưu điểm so
với bộ lọc Bloom truyền thống. Khác với bộ lọc
Bloom chỉ hỗ trợ thêm và truy vấn, bộ lọc Cuckoo
cho phép thêm, xóa và truy vấn phần tử một cách
linh hoạt. Giả sử cho tập hợp S = x1,x2,x3,...,xn gồm
n phần tử, bộ lọc Cuckoo sử dụng mảng CF gồm m
bucket, mỗi bucket chứa nhiều slot (thường là 4).
Hai hàm băm h1 và h2 được dùng để ánh xạ các
phần tử từ S đến các vị trí trong CF. Ngoài ra, hàm
băm f(x) được sử dụng để tạo mã băm (fingerprint)
cho phần tử x trong S.

Thuật toán 2: Cuckoo Filter
procedure Initialize(m, f, d)
 T ← array of m buckets, each with f slots, all set
to empty
 k ← number of hash functions
 h ← array of k hash functions
end procedure
procedure Add(x)
 i ← 0
 while i < k do
 index ← hi(x)
 if T[index] has an empty slot then
 Insert x into T[index]
 return
 end if
 i ← i + 1
 end while
 Perform cuckoo evictions or resize the filter
end procedure
procedure Search(x)
 i ← 0
 while i < k do
 index ← hi(x)
 if x is in T[index] then
 return True
 end if
 i ← i + 1
 end while
 return False
end procedure
procedure Delete(x)

 i ← 0
 while i < k do
 index ← hi(x)
 if x is in T[index] then
 Remove x from T[index]
 return
 end if
 i ← i + 1
 end while
 return False
end procedure

2.3. Quotient Filter

Quotient Filter (QF) (Geil et al., 2018) là một
cấu trúc dữ liệu xác suất hiệu quả để kiểm tra sự hiện
diện của các phần tử trong tập dữ liệu lớn. QF là biến
thể của bộ lọc Bloom, chia khóa thành thương số và
số dư để sử dụng bộ nhớ hiệu quả hơn (Al-hisnawi
& Ahmadi, 2016). QF đạt tỷ lệ nén cao, giảm không
gian lưu trữ và lỗi dương tính giả so với bộ lọc
Bloom. Tuy nhiên, QF có độ phức tạp cao hơn khi
chèn, xóa do cần sắp xếp lại phần tử. QF sử dụng
hàm f(x) để tạo mã băm độ dài p bit cho phần tử x.
Mã băm gồm số dư fr(x) (r bit trọng số thấp) và
thương số fq(x) (q bit trọng số cao), với q = p − r.
QF hoạt động như bảng băm mở, gồm 2q bucket,
mỗi bucket chứa số dư fr(x) được xác định bởi
thương số fq(x). Mỗi bucket có r bit cho số dư và 3
bit siêu dữ liệu: is_occupied, is_continuation,
is_shifted. Khi nhiều phần tử có cùng thương số,
chúng được sắp xếp thành chuỗi bucket gọi là run.
Một cluster là chuỗi các run liên tiếp không có
bucket trống ở giữa. Số dư có thể được lưu trong
canonical bucket hoặc một bucket gần đó. Khi thêm
phần tử x, ta xác định mã băm f(x). Giả sử f(x) =
00000010 (8 bit), cần ít nhất 3 bit cho thương số, 5
bit cho số dư. Khi đó, xq = 000 (thương số) và xr =
00010 (số dư). Vị trí chèn x là 0 vì xq = 000. Giá trị
xr = 00010 được thêm vào vị trí 0 trong mảng QF,
bit is_occupied được đặt là 1.

Thuật toán 3: Quotient Filter
procedure Initialize(m, f, q)
 T ← array of m buckets, each with f slots, all set
to empty
 Q ← array of q quotient values, initially all set to
0
 k ← number of hash functions
 h ← array of k hash functions
end procedure

procedure Add(x)
 i ← 0
 while i < k do

Tạp chí Khoa học Đại học Cần Thơ Tập 60, Số 5A (2024): 59-68

62

 index ← hi(x)
 if T[index] has an empty slot then
 Insert x into T[index]
 return
 end if
 i ← i + 1
 end while
 Perform quotient filter splitting or resizing
end procedure
procedure Search(x)
 i ← 0
 while i < k do
 index ← hi(x)
 if x is in T[index] then
 return True
 end if
 i ← i + 1
 end while
 return False
end procedure

procedure Delete(x)
 i ← 0
 while i < k do
 index ← hi(x)
 if x is in T[index] then
 Remove x from T[index]
 return
 end if
 i ← i + 1
 end while
 return False
end procedure

2.4. Morton Filter

Bộ lọc Morton Filter (MF) (Breslow & Jayasena,
2018) là một biến thể của bộ lọc Cuckoo với một số
cải tiến đáng kể. MF sử dụng kỹ thuật nén dữ liệu,
tách biệt đại diện dữ liệu logic và vật lý, cũng như
ưu tiên một số bucket để tối ưu hóa hiệu suất và sử
dụng bộ nhớ. MF nén các bucket và chỉ lưu trữ các
mã băm khác rỗng, giúp giảm đáng kể số lần truy
cập bộ nhớ cho mỗi hoạt động. MF sử dụng tập hợp
MF với n bucket, mỗi bucket chứa nhiều slot. Hàm
f(x) là mã băm của phần tử x, h1(x) và h2(x) ánh xạ
x vào một vị trí bucket trong MF. f(x) được lưu tại
vị trí do h1(x) hoặc h2(x) xác định.

Thuật toán 4: Morton Filter
procedure Initialize(m, n, k)
 MF ← array of n buckets, each with m slots, all
set to empty
 h ← array of k hash functions
end procedure

procedure add(x)
 i ← 0
 while i < k do
 index ← hi(x)
 if MF[index] has an empty slot then
 Insert x into MF[index]
 return
 end if
 i ← i + 1
 end while
 Perform Morton Filter splitting or resizing
end procedure
procedure Search(x)
 i ← 0
 while i < k do
 index ← hi(x)
 if x is in MF[index] then
 return True
 end if
 i ← i + 1
 end while
 return False
end procedure
procedure Delete(x)
 i ← 0
 while i < k do
 index ← hi(x)
 if x is in MF[index] then
 Remove x from MF[index]
 return
 end if
 i ← i + 1
 end while
 return False
end procedure

2.5. Vacuum Filter

Bộ lọc Vacuum (Wang et al., 2019) là một cấu
trúc dữ liệu xác suất hiệu quả cho phép thêm, xóa và
tìm kiếm các phần tử, tương tự như Bộ lọc Cuckoo
nhưng hiệu quả hơn về không gian lưu trữ và thông
lượng. Bộ lọc Vacuum sử dụng một bảng gồm m
bucket, mỗi bucket có nhiều slot (thường là 4) để lưu
trữ các mã băm f(x). Các mã băm này có thể được
lưu trữ tại một trong hai vị trí được xác định bởi
h1(x) = h(x) mod m và h2(x) = h1(x) ⊕ (h(f(x)) mod
m). Khác với Bộ lọc Cuckoo, Bộ lọc Vacuum chia
các bucket thành các chunk có kích thước bằng nhau
L, với L = 2n và m là bội số của L. Khi thêm phần
tử x, tính h1(x), h2(x), f(x) và tìm slot trống để lưu
f(x). Nếu không có slot trống, di chuyển các mã băm
khác để tạo chỗ trống. Khi tìm kiếm x, kiểm tra sự
hiện diện của f(x) tại các vị trí xác định. Khi xóa x,
tìm và loại bỏ f(x). Bộ lọc Vacuum đạt hiệu quả vượt

Tạp chí Khoa học Đại học Cần Thơ Tập 60, Số 5A (2024): 59-68

63

trội về không gian và thông lượng so với các bộ lọc
Cuckoo, Bloom, Quotient và Morton.
Thuật toán 5: Vacuum Filter
procedure Initialize(m, n, k)
 VF ← array of n buckets, each with m slots, all
set to empty
 h ← array of k hash functions
end procedure

procedure Add(x)
 for i from 0 to k-1 do
 index ← hi(x)
 if VF[index] has an empty slot then
 Insert x into VF[index]
 return
 end if
 end for
 ReorderOrResize()
end procedure

procedure Search(x)
 for i from 0 to k-1 do
 index ← hi(x)
 if x is in VF[index] then
 return True
 end if
 end for
 return False
end procedure

procedure Delete(x)
 for i from 0 to k-1 do
 index ← hi(x)
 if x is in VF[index] then
 Remove x from VF[index]
 return True
 end if
 end for
 return False
end procedure

2.6. Apache Spark

Apache Spark (Zaharia et al., 2010) là một
framework xử lý dữ liệu quy mô lớn có thể thực hiện
nhanh chóng việc xử lý tác vụ trên các tập dữ liệu
lớn và cũng có thể phân tán trên nhiều máy tính.
Spark tương thích với nhiều hệ thống tập tin phân
tán như Hadoop HDFS.

2.7. Các bộ lọc trong Apache Spark
2.7.1. Bloom Filter trong Apache Spark

Bloom Filter là một cấu trúc dữ liệu xác suất
được sử dụng rộng rãi trong Apache Spark để kiểm

tra xem một phần tử có phải là thành viên của một
tập hợp hay không. Nó đặc biệt hữu ích để giảm kích
thước tập dữ liệu trước khi thực hiện các hoạt động
tốn kém như join. Trong Spark, Bloom Filter được
triển khai bằng cách sử dụng một loạt các hàm băm
ánh xạ các phần tử vào các vị trí trong một mảng bit,
giảm đáng kể nhu cầu về bộ nhớ với chi phí là một
tỷ lệ dương tính giả có thể quản lý được. Hình 1 và
2 mô tả hàm Map() và Reduce() khi triển khai
Bloom Filter trên Apache Spark.

Hình 1. Hàm Map() khi triển khai Bloom Filter

Hình 2. Hàm Reduce() khi triển khai

Bloom Filter

2.7.2. Cuckoo Filter trong Apache Spark

Cuckoo Filter mở rộng các khả năng của Bloom
Filter bằng cách không chỉ cho phép thêm và truy
vấn phần tử mà còn cho phép xóa các phần tử. Điều
này làm cho Cuckoo Filter trở nên phù hợp với các
tập dữ liệu trong Spark. Nó sử dụng một mảng
bucket, trong đó mỗi bucket có thể chứa nhiều mục,
cùng với hai hàm băm để xác định vị trí của mục.
Hình 3 và 4 thể hiện kiến trúc của Cuckoo Filter
trong Apache Spark.

Hình 3. Hàm Map() khi triển khai

Cuckoo Filter

Tạp chí Khoa học Đại học Cần Thơ Tập 60, Số 5A (2024): 59-68

64

Hình 4. Hàm Reduce() khi triển khai

Cuckoo Filter

2.7.3. Quitient Filter trong Apache Spark

Quotient Filter là một biến thể của Bloom Filter,
tuy nhiên nó sử dụng cách tiếp cận khác để cải thiện
hiệu năng. Thay vì sử dụng một mảng bit như Bloom
Filter, Quotient Filter lưu trữ các giá trị băm dưới
dạng cặp thương số (quotient) và số dư (remainder).
Điều này cho phép Quotient Filter nén dữ liệu hiệu
quả hơn và giảm không gian lưu trữ so với Bloom
Filter truyền thống. Trong Spark, Quotient Filter có
thể được triển khai để tối ưu hóa việc lọc và truy vấn
trên tập dữ liệu lớn. Việc áp dụng Quotient Filter
giúp giảm đáng kể không gian lưu trữ và cải thiện
thời gian xử lý. Hình 11 và 12 minh họa kiến trúc
của Quotient

Hình 5. Hàm Map() khi triển khai

Quotient Filter

Hình 6. Hàm Reduce() khi triển khai

Quotient Filter

2.7.4. Morton Filter trong Apache Spark

Morton Filter là một biến thể mới hơn của các
thuật toán lọc xác suất cung cấp cách tiếp cận tối ưu
bằng cách kết hợp các kỹ thuật nén và tổ chức bucket
để tối ưu hóa cả không gian lưu trữ và hiệu suất. Khi

triển khai trong Apache Spark, Morton Filter giảm
thiểu việc truy cập bộ nhớ trong quá trình truy vấn,
làm cho nó phù hợp với các môi trường đòi hỏi cả
hiệu suất cao và sử dụng bộ nhớ hiệu quả. Kiến trúc
của Morton Filter trên Apache Spark dựa trên
Cuckoo Filter nhưng được cải tiến đáng kể để tăng
hiệu suất. Morton Filter sử dụng kỹ thuật nén và tổ
chức dưới các bucket giúp tối ưu hóa không gian lưu
trữ và giảm số lần truy cập bộ nhớ. Các phần tử trong
Morton Filter được băm và lưu trữ trong các bucket,
tương tự như Cuckoo Filter, nhưng với cách nén dữ
liệu được cải thiện đáng kể. Nhờ vào các cải tiến
này, Morton Filter có thể thực hiện các tác vụ tìm
kiếm nhanh hơn và hiệu quả hơn trong môi trường
xử lý phân tán của Spark

2.7.5. Vacuum Filter trong Apache Spark

Vacuum Filter là một cấu trúc dữ liệu xác suất
mới được giới thiệu gần đây như một giải pháp thay
thế cho Bloom Filter và Cuckoo Filter. Vacuum
Filter kết hợp các kỹ thuật của cả hai bộ lọc này để
đạt được hiệu quả tốt hơn về cả không gian lưu trữ
và thời gian xử lý. Kiến trúc của Vacuum Filter trên
Apache Spark dựa trên Bloom Filter nhưng với các
cải tiến để tăng hiệu suất và giảm không gian lưu
trữ. Vacuum Filter kết hợp các kỹ thuật từ cả Bloom
Filter và Cuckoo Filter, cho phép chèn, xóa và truy
vấn các phần tử một cách hiệu quả hơn. Trong
Spark, Vacuum Filter được thiết kế để tận dụng tối
đa khả năng xử lý song song và phân tán, giúp tối
ưu hóa các truy vấn trên tập dữ liệu lớn. Những cải
tiến này làm cho Vacuum Filter trở thành một lựa
chọn tốt hơn cho các ứng dụng yêu cầu xử lý dữ liệu
lớn với hiệu suất cao. Trong Spark, Vacuum Filter
có thể được sử dụng để tối ưu hóa các truy vấn trên
tập dữ liệu lớn. Nó sử dụng một bảng băm với cấu
trúc đặc biệt cho phép chèn, xóa và truy vấn các
phần tử một cách hiệu quả. Vacuum Filter cũng hỗ
trợ xử lý song song và phân tán trên nhiều nút tính
toán trong cụm Spark.

3. THỰC NGHIỆM
3.1. Môi trường và bộ dữ liệu

Các thực nghiệm được tiến hành trên một cụm 7
máy tính (1 master và 6 nút tính toán). Mỗi máy tính
sử dụng hệ điều hành Ubuntu 20.04 LTS và được
cấu hình với 4 vCPU, 32GB RAM và 70GB HDD.
Môi trường được cài đặt các phần mềm sau: Java
1.8, Hadoop 3.2.2 và Spark 3.2.0. Spark được cấu
hình để chạy ở chế độ master với 6 executor, trong
đó mỗi executor có 3 CPU và 30GB RAM. HDFS
được cấu hình để lưu trữ dữ liệu đầu vào và đầu ra.
Các tập dữ liệu được sử dụng để chạy thử nghiệm là

Tạp chí Khoa học Đại học Cần Thơ Tập 60, Số 5A (2024): 59-68

65

dữ liệu chuẩn được tạo bởi Purdue MapReduce
Benchmarks Suite (Ahmad et al., 2012).

Các thử nghiệm thực hiện trên hai môi trường
khác nhau: (1) Môi trường local được thực hiện trên
một máy tính duy nhất. Apache Spark được cài đặt
và cấu hình để chạy trên chế độ local, tận dụng tài
nguyên của máy đơn để xử lý dữ liệu; và (2) Môi
trường cluster được thực hiện trên một cụm máy tính
(cluster) gồm 6 nút tính toán. Apache Spark được
cài đặt và cấu hình để chạy trên chế độ cluster, phân
phối tính toán trên nhiều nút để xử lý song song dữ
liệu. Việc thực hiện thực nghiệm trên cả hai môi
trường local và cluster giúp đánh giá toàn diện hiệu
năng của các thuật toán lọc trong các điều kiện khác
nhau. Môi trường local cho phép kiểm tra khả năng
hoạt động và so sánh trực tiếp giữa các thuật toán,
trong khi môi trường cluster giúp đánh giá khả năng
mở rộng và hiệu quả xử lý phân tán của chúng.

Bảng 1. Bộ dữ liệu thực nghiệm

Test Dataset L Dataset R
Size Num_record Size Num_record

1 2GB 5,366,662 2GB 2,681,966
2 3GB 8,049,298 3GB 5,364,698

Các tập dữ liệu đều được lưu trữ dưới dạng tệp
văn bản thuần túy, mỗi dòng có nhiều hơn một
trường được phân tách bằng dấu phẩy. Khóa kết nối
là cột đầu tiên của cả hai tập dữ liệu. Số lượng bản
ghi và kích thước của các tập dữ liệu được mô tả
trong Bảng 1.

Hình 7. So sánh chi phí lưu trữ (bit)

Các thử nghiệm được thực hiện với sáu thuật
toán bao gồm: Bloom Filter, Cuckoo Filter, Morton
Filter, Quotient Filter và Vacuum Filter. Trong thử
nghiệm, hai bước được thực hiện để đánh giá độ
chính xác của các thuật toán: Đầu tiên áp dụng phép
join không có bộ lọc (khoảng cách bằng 0) lên hai
tập dữ liệu và so sánh kết quả thu được; sau đó, join
có áp dụng các bộ lọc khác nhau lên cùng hai tập dữ
liệu đó. Việc so sánh kết quả của hai bước này giúp
đảm bảo các thuật toán lọc hoạt động chính xác và
cho phép đánh giá hiệu năng của chúng.

3.2. Kết quả

Bảng 2 trình bày các công thức tính toán số bit
cần thiết để lưu trữ một phần tử trong các bộ lọc
khác nhau và kết quả thực nghiệm so sánh chi phí
lưu trữ Hình 7 minh họa hiệu suất của một số bộ lọc
xác suất, biểu thị chi phí lưu trữ của chúng theo bit
trên mỗi phần tử trên một dải tỷ lệ dương tính giả từ
0,1% đến 1%. Ban đầu, Bloom Filter yêu cầu 14,35
bit trên phần tử ở mức tỷ lệ dương tính giả 0,1%,
giảm xuống 9,57 bit khi tỷ lệ này tăng lên 1%. Sự
giảm dần này minh họa hiệu quả không gian của
Bloom Filter ở các ngưỡng lỗi cao hơn. Cuckoo
Filter khởi đầu với một lợi thế nhẹ, yêu cầu 13,65
bit cho mỗi phần tử và giảm dần xuống còn 10,15
bit khi tỷ lệ dương tính giả đạt 1%. Đường cong của
nó gần như ổn định, thể hiện sự cải thiện khá khiêm
tốn về hiệu quả lưu trữ khi chấp nhận tỷ lệ sai sót
cao hơn.

Quotient Filter nổi bật với chỉ 12,73 bit ban đầu
và giảm xuống còn 9,23 bit khi tỷ lệ dương tính giả
đạt 1%. Nó duy trì vị trí dẫn đầu về hiệu quả lưu trữ
trong toàn bộ phạm vi khảo sát, khẳng định sự phù
hợp của nó cho các ứng dụng nhạy cảm với không
gian lưu trữ. Đường cong của Morton Filter bắt đầu
ở 13,12 bit và kết thúc ở 9,63 bit, cho thấy một sự
cải thiện ổn định nhưng khiêm tốn trong việc sử
dụng không gian khi cho phép tỷ lệ lỗi cao hơn.
Trong khi đó, Vacuum Filter khởi đầu ở mức 13,72
bit và kết thúc với 10,23 bit tại ngưỡng dương tính
giả 1%, thể hiện sự thay đổi ít nhất. Quỹ đạo phẳng
của nó cho thấy sự kém hiệu quả hơn trong việc tiết
kiệm không gian khi tỷ lệ dương tính giả tăng lên.

Bảng 2. Công thức tính bit trên phần tử (Fan et
al., 2014; Geil et al., 2018; Breslow &
Jayasena, 2018; Burdakov et al., 2019;
Wang et al., 2019)

Filters Số bit trên phần tử

Bloom Filter 1.44 𝑙𝑙𝑙𝑙𝑙𝑙2(
1
𝜀𝜀

)

Cuckoo Filter (𝑙𝑙𝑙𝑙𝑙𝑙2 �
1
𝜀𝜀
� + 3)/𝛼𝛼

Quotient Filter (𝑙𝑙𝑙𝑙𝑙𝑙2 �
1
𝜀𝜀
� + 2.215)/𝛼𝛼

Vacuum Filter (𝑙𝑙𝑙𝑙𝑙𝑙2 �
1
𝜀𝜀
� + 3.07)/𝛼𝛼

Morton Filter (𝑙𝑙𝑙𝑙𝑙𝑙2 �
1
𝜀𝜀
� + 2.5)/𝛼𝛼

So sánh thời gian thực thi trong các Hình 8 và 9,
hiệu suất của các bộ lọc khác nhau trên ba hoạt động
chính là chèn, tìm kiếm và xóa được đánh giá bằng
cách sử dụng hai tập dữ liệu có kích thước khác

Tạp chí Khoa học Đại học Cần Thơ Tập 60, Số 5A (2024): 59-68

66

nhau. Bloom Filter cho thấy thời gian thực thi cân
bằng cho các hoạt động chèn và tìm kiếm, lần lượt
vào khoảng 8,97 giây và 8,78 giây, không hỗ trợ
xóa. Sự cân bằng này biến nó thành một lựa chọn
đáng tin cậy cho các tập dữ liệu tĩnh không yêu cầu
xóa. Cuckoo Filter có hiệu suất chèn gần tương đồng
với Bloom Filter, lần lượt là 9,17 giây và 8,24 giây.
Đáng chú ý, thời gian xóa của Cuckoo Filter thấp
nhất ở mức 8,02 giây, cho thấy Cuckoo Filter phù
hợp hơn cho môi trường có các bản ghi thường
xuyên bị xóa. Quotient Filter, mặc dù có thời gian
chèn cao nhất là 2,44 giây, nhưng với thời gian tìm
kiếm thấp nhất ở mức 2,57 giây. Thời gian xóa cũng
tương đối thấp ở mức 2,15 giây. Thời gian tìm kiếm
của nó có thể phù hợp cho các ứng dụng ưu tiên hoạt
động đọc và chậm hơn cho thao tác cập nhật. Morton
Filter có hiệu suất khác biệt đáng kể với thời gian
chèn tương đối dài là 6,45 giây nhưng có thời gian
tìm kiếm vượt trội là 3,07 giây và thời gian xóa là
2,80 giây. Những đặc điểm này cho thấy Morton
Filter có thể được ưu tiên trong các kịch bản mà tìm
kiếm nhanh quan trọng hơn chèn. Tuy nhiên,
Vacuum Filter có thời gian chèn tăng cao lên 11,73
giây, cao hơn đáng kể so với các bộ lọc khác. Thời
gian tìm kiếm và xóa của nó lần lượt là 2,71 giây và
2,58 giây. Thời gian chèn cao có thể là một bất lợi
đáng kể cho các ứng dụng yêu cầu cập nhật dữ liệu
thường xuyên.

Nhìn chung, khi xem xét thời gian thực thi cho
chèn, tìm kiếm và xóa, việc lựa chọn bộ lọc có thể
phụ thuộc vào các yêu cầu cụ thể của trường hợp sử
dụng. Đối với các tập dữ liệu tĩnh hoặc khi tốc độ
chèn không phải là yếu tố quan trọng, Vacuum Filter
có thể là một lựa chọn khả thi do thời gian tìm kiếm
và xóa thấp của nó. Đối với môi trường có các thao
tác cập nhật thường xuyên, hiệu suất cân bằng và
thời gian xóa thấp của Cuckoo Filter có thể phù hợp
hơn. Ngược lại, khi ưu tiên tốc độ đọc, các bộ lọc
Quotient và Morton cung cấp những lợi ích thuyết
phục mặc dù thời gian chèn chậm hơn.

So sánh thời gian thực thi trong cụm Spark Bảng
3 và Hình 10 cho thấy kết quả thực nghiệm so sánh
thời gian thực thi của các thuật toán lọc trong môi
trường cụm Spark đã làm nổi bật những ưu điểm nổi
bật của xử lý dữ liệu song song và phân tán. Spark
với khả năng thực hiện tính toán phân tán trên nhiều
nút, cho phép các thuật toán như Bloom Filter,
Cuckoo Filter và đặc biệt là Quotient Filter thể hiện
tốc độ xử lý nhanh hơn khi xử lý trên các bộ
dữ liệu lớn.

Hình 8. Tổng thời gian thực thi của các bộ lọc

với 3GB dữ liệu (đơn vị: giây)

Quotient Filter nổi bật với thời gian chèn chỉ
2,34 giây và thời gian tìm kiếm là 2,57 giây, đã thể
hiện sự vượt trội so với Bloom Filter (8,97 giây cho
chèn, 8,77 giây cho tìm kiếm) và Cuckoo Filter
(9,12 giây cho chèn, 8,96 giây cho tìm kiếm). Điều
này thể hiện khả năng tận dụng sức mạnh tính toán
song song của Spark, cho phép Quotient Filter xử lý
nhanh chóng và hiệu quả các bộ dữ liệu lớn, vượt xa
hiệu suất của việc chạy tuần tự trên môi trường máy
tính đơn.

Hình 9. Tổng thời gian thực thi của các bộ lọc

với 5GB dữ liệu (đơn vị: giây)

Hình 10. So sánh thời gian xử lý trên môi

trường cục bộ và phân tán trên Spark

Hình 10 cho thấy sự cải thiện đáng kể về hiệu
năng của các thuật toán khi chuyển từ môi trường
local sang cluster, đặc biệt là với Quotient Filter. Kết
quả cho thấy Quotient Filter đạt được mức cải thiện
hơn 50% khi chạy trên cluster so với local, vượt trội

Tạp chí Khoa học Đại học Cần Thơ Tập 60, Số 5A (2024): 59-68

67

hơn hẳn so với các thuật toán khác. Điều này có thể
được giải thích bởi kiến trúc phù hợp và dễ dàng
triển khai với xử lý song song, Quotient Filter có thể
tận dụng hiệu quả các tài nguyên phần cứng và băng
thông mạng của cluster, dẫn đến sự cải thiện đáng
kể về hiệu năng xử lý.

Bảng 3. Tổng thời gian thực hiện bộ lọc với 2gb
dữ liệu (đơn vị: giây)

Local Spark cluster

Insertion
time

Search
time

Insertion
time

Search
time

Bloom
Filter 8,97 8,77 13,23 7,46

Cuckoo
Filter 9,12 8,96 14,51 6,04

Quotient
Filter 2,34 2,57 1,04 1,18

Morton
Filter 11,24 2,87 15,14 1,22

Vacuum
Filter 7,94 2,65 3,04 1,28

Đáng lưu ý là khi được triển khai trên Spark, tất
cả các thuật toán này đều hưởng lợi từ tính song
song dữ liệu và xử lý song song trên nhiều nút tính
toán. Tuy nhiên, mức độ cải thiện hiệu suất khác
nhau tùy thuộc vào đặc điểm và điểm mạnh của từng
thuật toán. Quotient Filter với những tối ưu hóa về
không gian lưu trữ và thời gian thực thi đã chứng
minh là rất phù hợp và hiệu quả khi kết hợp với sức
mạnh của Spark. Kết quả cho thấy việc tận dụng xử
lý song song và phân tán trên các nền tảng như Spark
mang lại những lợi ích đáng kể cho các ứng dụng xử
lý dữ liệu quy mô lớn. Nó không chỉ giảm đáng kể
thời gian tính toán mà còn mở ra khả năng mở rộng
và xử lý các bộ dữ liệu có kích thước lớn. Phương
pháp tiếp cận này là một xu hướng đầy hứa hẹn và
ngày càng phổ biến trong lĩnh vực khoa học dữ liệu
và xử lý thông tin hiện đại.

Kết quả của nghiên cứu này nhìn chung phù hợp
với những công trình liên quan trước đây. Pandey et
al. (2017) cũng chỉ ra rằng Quotient Filter có hiệu
quả vượt trội về không gian lưu trữ và thời gian thực
thi khi so sánh với Bloom Filter và Cuckoo Filter.

Tương tự, Agarwal et al. (2013) nhận thấy sự cải
thiện đáng kể về hiệu năng của các bộ lọc xác suất,
đặc biệt là Quotient Filter, khi triển khai trên Apache
Spark. Những kết quả này củng cố thêm tính đúng
đắn và ý nghĩa của các phát hiện trong nghiên cứu.
Tuy nhiên, việc có thêm nhiều nghiên cứu với các
tập dữ liệu và kịch bản đa dạng hơn là cần thiết để
đánh giá toàn diện hiệu năng của các thuật toán lọc,
đặc biệt là với sự xuất hiện của các biến thể mới như
Morton Filter và Vacuum Filter.

4. KẾT LUẬN

Trong nghiên cứu này, các thuật toán lọc hiệu
quả trong môi trường xử lý dữ liệu lớn như Bloom
Filter, Cuckoo Filter, Quotient Filter, Morton Filter
và Vacuum Filter được trình bày chi tiết và đánh giá
hiệu suất. Kết quả thực nghiệm cho thấy Quotient
Filter là thuật toán hiệu quả nhất về mặt lưu trữ và
cân bằng tốt giữa các tiêu chí hiệu năng. Quotient
Filter sử dụng ít không gian lưu trữ nhất cho mỗi
phần tử và đạt tốc độ chèn, tìm kiếm, xóa ở mức cao
và ổn định. Bên cạnh đó, các thuật toán khác cũng
thể hiện những ưu điểm riêng phù hợp với các yêu
cầu cụ thể. Bloom Filter có tốc độ tốt, thích hợp cho
các ứng dụng yêu cầu chèn và tìm kiếm nhanh trên
dữ liệu tĩnh. Morton Filter nổi trội về tốc độ tìm
kiếm nhưng chậm hơn khi chèn dữ liệu mới, phù hợp
khi ưu tiên tốc độ đọc. Vacuum Filter, mặc dù có
thời gian chèn chậm nhất, nhưng cung cấp khả năng
tìm kiếm và xóa nhanh, là một lựa chọn tốt cho các
trường hợp yêu cầu tìm kiếm và xóa nhanh mà
không cần chèn dữ liệu thường xuyên. Khi được
triển khai trên nền tảng Spark với khả năng xử lý
song song và phân tán, tốc độ xử lý của các thuật
toán được cải thiện đáng kể. Đặc biệt, Quotient
Filter đạt mức cải thiện vượt bậc, hơn 50% khi chạy
trên cluster so với môi trường local. Điều này mở ra
triển vọng ứng dụng hiệu quả các thuật toán lọc, đặc
biệt là Quotient Filter, để xử lý dữ liệu lớn và
phân tán.

LỜI CẢM TẠ

Nghiên cứu này được thực hiện với sự tài trợ của
Trường Đại học Cần Thơ (Đề tài T2024-88).

TÀI LIỆU THAM KHẢO (REFERENCES)
Agarwal, S., Mozafari, B., Panda, A., Milner, H.,

Madden, S., & Stoica, I. (2013). BlinkDB:
Queries with bounded errors and bounded
response times on very large data. Proceedings
of the 8th ACM European Conference on
Computer Systems, EuroSys 2013, 29–42. ACM.
https://doi.org/10.1145/2465351.2465355

Ahmad, F., Lee, S., Thottethodi, M., & Vijaykumar,
T. N. (2012). PUMA: Purdue MapReduce
Benchmarks Suite. In ECE Technical Reports.

Al-hisnawi, M., & Ahmadi, M. (2016). Deep Packet
Inspection Using Quotient Filter. IEEE
Communications Letters, 20(11), 2217–2220.
https://doi.org/10.1109/LCOMM.2016.2601898

Tạp chí Khoa học Đại học Cần Thơ Tập 60, Số 5A (2024): 59-68

68

Breslow, A. D., & Jayasena, N. S. (2018). Morton
filters: Faster, spaceefficient cuckoo filters via
biasing, compression, and decoupled logical
sparsity. Proceedings of the VLDB Endowment,
11(9). VLDB Endowment.
https://doi.org/10.14778/3213880.3213884

Burdakov, A., Ermakov, E., Panichkina, A.,
Ploutenko, A., Grigorev, U., Ermakov, O., &
Proletarskaya, V. (2019). Bloom Filter Cascade
Application to SQL Query Implementation on
Spark. Proceedings - 27th Euromicro
International Conference on Parallel,
Distributed and Network-Based Processing,
PDP 2019. IEEE.
https://doi.org/10.1109/EMPDP.2019.8671557

Chaudhuri, S., Ganti, V., & Kaushik, R. (2006). A
primitive operator for similarity joins in data
cleaning. Proceedings - International
Conference on Data Engineering. IEEE.
https://doi.org/10.1109/ICDE.2006.9

Ezzaki, F., Abghour, N., Elomri, A., Moussaid, K.,
& Rida, M. (2020). Bloom filter and its variants
for the optimization of MapReduce’s algorithms:
A review. Proceedings of 2020 5th International
Conference on Cloud Computing and Artificial
Intelligence: Technologies and Applications,
CloudTech 2020. IEEE.
https://doi.org/10.1109/CloudTech49835.2020.9
365876

Fan, B., Andersen, D. G., Kaminsky, M., &
Mitzenmacher, M. D. (2014). Cuckoo filter:
Practically better than bloom. CoNEXT 2014 -
Proceedings of the 2014 Conference on
Emerging Networking Experiments and
Technologies. Association for Computing
Machinery.
https://doi.org/10.1145/2674005.2674994

Fier, F., Augsten, N., Bouros, P., Leser, U., &
Freytag, J. C. (2018). Set similarity joins on
MapReduce: An experimental survey.
Proceedings of the VLDB Endowment, 11(10).
VLDB Endowment.
https://doi.org/10.14778/3231751.3231760

García, S., Ramírez-Gallego, S., Luengo, J., Benítez,
J. M., & Herrera, F. (2016). Big data
preprocessing: methods and prospects. Big Data
Analytics, 1(1). https://doi.org/10.1186/s41044-
016-0014-0

Geil, A., Farach-Colton, M., & Owens, J. D. (2018).
Quotient Filters: Approximate Membership
Queries on the GPU. 2018 IEEE International
Parallel and Distributed Processing Symposium
(IPDPS), 451–462. IEEE.
https://api.semanticscholar.org/CorpusID:3991218

Kumar, N., Sai, K. H. S., Hordiichuk, V., Menon, R.,
Catherene, J. A. C., Saha, G. C., & Balaji, K.,
(2023). Harnessing the Power of Big Data:
Challenges and Opportunities in Analytics. Tuijin
Jishu/Journal of Propulsion Technology, 44(2).
https://doi.org/10.52783/tjjpt.v44.i2.193

Li, L. (2021). Efficient Distributed Database Clustering
Algorithm for Big Data Processing. Proceedings -
2021 6th International Conference on Smart Grid
and Electrical Automation, ICSGEA 2021. IEEE.
https://doi.org/10.1109/ICSGEA53208.2021.00118

Lu, Y., Prabhakar, B., & Bonomi, F. (2005). Bloom
filters: Design innovations and novel
applications. 43rd Annual Allerton Conference
on Communication, Control and Computing
2005, 2.

Maulana, M. S., Linuwih, B. P., Nuha, H. H., &
Satrya, G. B. (2023, August). Bloom, Xor, and
Cuckoo Filter Comparison for Database’s Query
Optimization. International Conference on ICT
Convergence. IEEE.
https://doi.org/10.1109/ICoICT58202.2023.1026
2536

Pandey, P., Bender, M. A., Johnson, R., & Patro, R.
(2017). A general-purpose counting filter: Making
every bit count. Proceedings of the ACM SIGMOD
International Conference on Management of Data,
Part F127746, 775–787. ACM.
https://doi.org/10.1145/3035918.3035963

Tran, T. T. Q., Phan, T. C., Laurent, A., & D’Orazio, L.
(2020, July). Optimization for large-scale fuzzy
joins using fuzzy filters in MapReduce.
International Conference on Fuzzy Systems (FUZZ-
IEEE) (pp 1-8). IEEE. .
https://doi.org/10.1109/FUZZ48607.2020.9177610

Wang, M., Zhou, M., Shi, S., & Qian, C. (2019).
Vacuum filters: More space-efficient and faster
replacement for bloom and cuckoo filters.
Proceedings of the VLDB Endowment, 13(2).
VLDB Endowment.
https://doi.org/10.14778/3364324.3364333

Yan, C., Zhao, X., Zhang, Q., & Huang, Y. (2017).
Efficient string similarity join in multi-core and
distributed systems. PLoS ONE, 12(3).
https://doi.org/10.1371/journal.pone.0172526

Yu, M., Li, G., Deng, D., & Feng, J. (2016). String
similarity search and join: a survey. In Frontiers
of Computer Science (Vol. 10, Issue 3).
https://doi.org/10.1007/s11704-015-5900-5

Zaharia, M., Chowdhury, M., Franklin, M. J.,
Shenker, S., & Stoica, I. (2010). Spark: cluster
computing with working sets. Proceedings of the
2nd USENIX Conference on Hot Topics in Cloud
Computing, 10. USENIX Association.
https://doi.org/ 10.5555/1863103.1863113.

	1. GIỚI THIỆU
	2. CƠ SỞ LÝ THUYẾT
	2.1. Bloom Filter
	2.2. Cuckoo Filter
	2.3. Quotient Filter
	2.4. Morton Filter
	2.5. Vacuum Filter
	2.6. Apache Spark
	2.7. Các bộ lọc trong Apache Spark
	2.7.1. Bloom Filter trong Apache Spark
	2.7.2. Cuckoo Filter trong Apache Spark
	2.7.3. Quitient Filter trong Apache Spark
	2.7.4. Morton Filter trong Apache Spark
	2.7.5. Vacuum Filter trong Apache Spark

	3. THỰC NGHIỆM
	3.1. Môi trường và bộ dữ liệu
	3.2. Kết quả

	4. KẾT LUẬN

