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TÓM TẮT 
Việc xử lý và phân tích dữ liệu nhanh chóng, hiệu quả trong kỷ nguyên 
dữ liệu lớn là thách thức quan trọng. Các thuật toán lọc giúp tăng hiệu 
suất xử lý dữ liệu lớn bằng cách loại bỏ dữ liệu không liên quan, giảm 
chi phí tính toán, rút ngắn thời gian xử lý truy vấn. Nghiên cứu này đánh 
giá hiệu năng của 5 thuật toán lọc phổ biến bao gồm Bloom Filter, 
Cuckoo Filter, Quotient Filter, Morton Filter và Vacuum Filter trong 
môi trường Apache Spark. Thông qua thực nghiệm trên các tập dữ liệu 
lớn, kết quả cho thấy Quotient Filter hiệu quả nhất về lưu trữ, Cuckoo 
Filter thể hiện sự cân bằng tốt giữa tốc độ chèn, tìm kiếm và xóa. Bloom 
Filter phù hợp với dữ liệu tĩnh, Morton Filter nổi trội về tốc độ tìm kiếm, 
Vacuum Filter có thời gian chèn chậm nhưng tìm kiếm và xóa nhanh. 
Việc kết hợp các thuật toán này với Apache Spark giúp cải tiến đáng kể 
hiệu suất xử lý nhờ khả năng phân tán và song song. Kết quả nghiên cứu 
cung cấp lựa chọn thuật toán lọc phù hợp và chỉ ra tiềm năng ứng dụng 
hiệu quả các thuật toán lọc trong xử lý dữ liệu quy mô lớn. 

Từ khóa: Apache Spark, Bloom Filter, Cuckoo Filter, Morton Filter, 
Quotient Filter, Vacuum Filter 

ABSTRACT 
Handling and analyzing data quickly and efficiently in the era of big 
data is a significant challenge. Filtering algorithms enhance the 
performance of big data processing by eliminating irrelevant data, 
reducing computational costs, and shortening query processing times. 
This study evaluates the performance of five popular filtering 
algorithms: Bloom Filter, Cuckoo Filter, Quotient Filter, Morton 
Filter, and Vacuum Filter in an Apache Spark environment. Through 
experiments on large datasets, the results show that the Quotient Filter 
is the most efficient in terms of storage, the Cuckoo Filter 
demonstrates a good balance between insertion, search, and deletion 
speeds. The Bloom Filter is suitable for static data, the Morton Filter 
excels in search speed, and the Vacuum Filter has a slow insertion 
time but fast search and deletion times. Integrating these algorithms 
with Apache Spark significantly improves processing performance 
thanks to its distributed and parallel capabilities. The study results 
provide guidance on selecting suitable filtering algorithms and 
highlight the potential for effectively applying filtering algorithms in 
large-scale data processing. 

Keywords: Apache Spark, Bloom Filter, Cuckoo Filter, Morton Filter, 
Quotient Filter, Vacuum Filter 
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1. GIỚI THIỆU 

Trong kỷ nguyên dữ liệu lớn, việc xử lý và phân 
tích dữ liệu nhanh chóng và hiệu quả là thách thức 
lớn (Kumar et al., 2023). Khả năng lọc và truy xuất 
thông tin liên quan từ tập dữ liệu khổng lồ trở nên 
quan trọng trong nhiều ứng dụng như khai phá dữ 
liệu, học máy, phân tích thời gian thực và hỗ trợ ra 
quyết định. Vì vậy, nghiên cứu và tối ưu hóa các 
thuật toán lọc đã thu hút sự quan tâm lớn của cộng 
đồng khoa học và chuyên gia ngành. Các thuật toán 
lọc giúp cải thiện đáng kể hiệu suất xử lý dữ liệu lớn 
bằng cách loại bỏ dữ liệu không liên quan hoặc dư 
thừa, giảm chi phí tính toán và rút ngắn thời gian 
truy vấn (Li, 2021). Hiệu quả của chúng tác động 
trực tiếp tới hiệu năng tổng thể và khả năng mở rộng 
của hệ thống xử lý dữ liệu lớn, khiến việc tối ưu hóa 
thuật toán lọc trở thành lĩnh vực nghiên cứu quan 
trọng (García et al., 2016). Các thuật toán lọc phổ 
biến như Bloom Filter, Cuckoo Filter, Quotient 
Filter, Morton Filter và Vacuum Filter đều có ưu 
nhược điểm riêng về hiệu quả lưu trữ, tốc độ chèn 
và truy vấn, tỷ lệ dương tính giả và khả năng thích 
ứng với đặc tính dữ liệu khác nhau. Việc hiểu rõ sự 
đánh đổi của từng thuật toán và lựa chọn giải pháp 
phù hợp cho từng bài toán cụ thể là rất quan trọng 
để tối ưu hóa hiệu suất xử lý. 

Bên cạnh đó, sự phát triển của các framework 
tính toán phân tán như Apache Spark đã tạo ra cuộc 
cách mạng trong xử lý dữ liệu lớn thông qua việc 
cho phép thực thi song song và phân tán các thuật 
toán lọc trên cụm máy tính lớn. Tích hợp các thuật 
toán lọc với các framework này hứa hẹn tăng tốc 
đáng kể tốc độ xử lý và khả năng xử lý khối lượng 
dữ liệu ngày càng tăng. Tuy nhiên, việc đánh giá và 
phân tích hiệu năng của các thuật toán lọc trong môi 
trường phân tán là cần thiết do sự khác biệt với môi 
trường truyền thống. Nhiều nghiên cứu gần đây đã 
tập trung vào ứng dụng và cải tiến các bộ lọc cấu 
trúc dữ liệu xác suất trong nhiều lĩnh vực khác nhau. 
Maulana et al. (2023) đề xuất sử dụng bộ lọc Bloom, 
Xor và Cuckoo để tối ưu hóa truy vấn cơ sở dữ liệu 
cho doanh nghiệp vừa và nhỏ. Ezzaki et al. (2020) 
cung cấp tổng quan về các biến thể của bộ lọc 
Bloom. Burdakov et al. (2019) áp dụng Bloom Filter 
Cascade trên Spark để tối ưu truy vấn SQL. Một số 
nghiên cứu khác tập trung vào bài toán tìm kiếm và 
kết hợp tương đồng chuỗi sử dụng các phương pháp 
lọc (Chaudhuri et al., 2006; Yu et al., 2016; Yan et 
al., 2017; Fier et al., 2018; Tran et al., 2020; Li, 
2021). Các nghiên cứu này chỉ ra sự phát triển tích 
cực và tiềm năng ứng dụng rộng rãi của các phương 
pháp lọc dữ liệu. 

     Nghiên cứu này nhằm giải quyết nhu cầu cấp 
thiết về đánh giá và so sánh toàn diện hiệu năng của 
các thuật toán lọc khác nhau trong bối cảnh xử lý dữ 
liệu lớn. Thông qua thử nghiệm và so sánh mở rộng, 
việc đánh giá ưu nhược điểm của từng thuật toán và 
sự phù hợp của chúng trong các tình huống cụ thể 
được thực hiện; đồng thời, nghiên cứu tác động của 
việc tích hợp các thuật toán này với Apache Spark, 
chỉ ra tiềm năng cải thiện hiệu suất đáng kể thông 
qua xử lý song song và phân tán. Những đóng góp 
chính của bài báo bao gồm: (1) tổng quan và phân 
tích toàn diện về 5 thuật toán lọc gồm Bloom Filter, 
Cuckoo Filter, Quotient Filter, Morton Filter và 
Vacuum Filter; (2) đánh giá hiệu năng thực nghiệm 
của các thuật toán trên tập dữ liệu thực tế; (3) phân 
tích ảnh hưởng của việc tích hợp các thuật toán với 
Apache Spark tới khả năng cải thiện hiệu suất; (4) 
đưa ra hướng dẫn lựa chọn thuật toán lọc phù hợp 
dựa trên yêu cầu và đặc điểm dữ liệu của ứng dụng. 
Các kết quả của nghiên cứu hứa hẹn giúp các chuyên 
gia tối ưu hóa quy trình xử lý dữ liệu lớn. 

2. CƠ SỞ LÝ THUYẾT  
2.1. Bloom Filter 

Bộ lọc Bloom (Lu et al., 2005) được giới thiệu 
bởi Burton Howard Bloom vào năm 1970, là một 
cấu trúc dữ liệu xác suất (PDS) được sử dụng rộng 
rãi trong lĩnh vực truy xuất và lưu trữ thông tin. Bộ 
lọc này dùng để kiểm tra tư cách thành viên của một 
phần tử trong tập hợp, xác nhận chắc chắn về việc 
không phải là thành viên và tư cách thành viên được 
suy ra theo xác suất với một sai số có thể tính toán 
được, gọi là tỷ lệ dương tính giả. Bộ lọc Bloom sử 
dụng một mảng B gồm m bit và một tập hợp S = 
x1,x2,x3,...,xn gồm n phần tử. Ngoài ra, k hàm băm 
h1,h2,...,hk được dùng để ánh xạ mỗi phần tử trong 
S thành m vị trí trong mảng B, với k được tính bằng 
công thức k = (m/n)log(2). Ban đầu, tất cả các bit 
trong mảng B được đặt bằng 0. 

Thuật toán 1: Bloom Filter 
procedure Initialize(m, k) 
    B ← array of m bits, all set to 0 
    H ← array of k hash functions 
end procedure 
procedure Add(x) 
    for i ← 1 to k do 
        position ← Hi(x) mod m 
        B[position] ← 1 
    end for 
end procedure 
procedure Query(x) 
    for i ← 1 to k do 



Tạp chí Khoa học Đại học Cần Thơ   Tập 60, Số 5A (2024): 59-68 

61 

        position ← Hi(x) mod m 
        if B[position] = 0 then 
            return False 
        end if 
    end for 
    return True 
end procedure 

2.2. Cuckoo Filter 

Bộ lọc Cuckoo (Fan et al., 2014)  là một cấu trúc 
dữ liệu mạnh mẽ cho các truy vấn về tư cách thành 
viên tập hợp gần đúng, mang lại nhiều ưu điểm so 
với bộ lọc Bloom truyền thống. Khác với bộ lọc 
Bloom chỉ hỗ trợ thêm và truy vấn, bộ lọc Cuckoo 
cho phép thêm, xóa và truy vấn phần tử một cách 
linh hoạt. Giả sử cho tập hợp S = x1,x2,x3,...,xn gồm 
n phần tử, bộ lọc Cuckoo sử dụng mảng CF gồm m 
bucket, mỗi bucket chứa nhiều slot (thường là 4). 
Hai hàm băm h1 và h2 được dùng để ánh xạ các 
phần tử từ S đến các vị trí trong CF. Ngoài ra, hàm 
băm f(x) được sử dụng để tạo mã băm (fingerprint) 
cho phần tử x trong S. 

Thuật toán 2: Cuckoo Filter 
procedure Initialize(m, f, d) 
    T ← array of m buckets, each with f slots, all set 
to empty 
    k ← number of hash functions 
    h ← array of k hash functions 
end procedure 
procedure Add(x) 
    i ← 0 
    while i < k do 
        index ← hi(x) 
        if T[index] has an empty slot then 
            Insert x into T[index] 
            return 
        end if 
        i ← i + 1 
    end while 
    Perform cuckoo evictions or resize the filter 
end procedure 
procedure Search(x) 
    i ← 0 
    while i < k do 
        index ← hi(x) 
        if x is in T[index] then 
            return True 
        end if 
        i ← i + 1 
    end while 
    return False 
end procedure 
procedure Delete(x) 

    i ← 0 
    while i < k do 
        index ← hi(x) 
        if x is in T[index] then 
            Remove x from T[index] 
            return 
        end if 
        i ← i + 1 
    end while 
    return False 
end procedure 

2.3. Quotient Filter 

Quotient Filter (QF) (Geil et al., 2018)  là một 
cấu trúc dữ liệu xác suất hiệu quả để kiểm tra sự hiện 
diện của các phần tử trong tập dữ liệu lớn. QF là biến 
thể của bộ lọc Bloom, chia khóa thành thương số và 
số dư để sử dụng bộ nhớ hiệu quả hơn (Al-hisnawi 
& Ahmadi, 2016). QF đạt tỷ lệ nén cao, giảm không 
gian lưu trữ và lỗi dương tính giả so với bộ lọc 
Bloom. Tuy nhiên, QF có độ phức tạp cao hơn khi 
chèn, xóa do cần sắp xếp lại phần tử. QF sử dụng 
hàm f(x) để tạo mã băm độ dài p bit cho phần tử x. 
Mã băm gồm số dư fr(x) (r bit trọng số thấp) và 
thương số fq(x) (q bit trọng số cao), với q = p − r. 
QF hoạt động như bảng băm mở, gồm 2q bucket, 
mỗi bucket chứa số dư fr(x) được xác định bởi 
thương số fq(x). Mỗi bucket có r bit cho số dư và 3 
bit siêu dữ liệu: is_occupied, is_continuation, 
is_shifted. Khi nhiều phần tử có cùng thương số, 
chúng được sắp xếp thành chuỗi bucket gọi là run. 
Một cluster là chuỗi các run liên tiếp không có 
bucket trống ở giữa. Số dư có thể được lưu trong 
canonical bucket hoặc một bucket gần đó. Khi thêm 
phần tử x, ta xác định mã băm f(x). Giả sử f(x) = 
00000010 (8 bit), cần ít nhất 3 bit cho thương số, 5 
bit cho số dư. Khi đó, xq = 000 (thương số) và xr = 
00010 (số dư). Vị trí chèn x là 0 vì xq = 000. Giá trị 
xr = 00010 được thêm vào vị trí 0 trong mảng QF, 
bit is_occupied được đặt là 1. 

Thuật toán 3: Quotient Filter 
procedure Initialize(m, f, q) 
    T ← array of m buckets, each with f slots, all set 
to empty 
    Q ← array of q quotient values, initially all set to 
0 
    k ← number of hash functions 
    h ← array of k hash functions 
end procedure 
 
procedure Add(x) 
    i ← 0 
    while i < k do 
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        index ← hi(x) 
        if T[index] has an empty slot then 
            Insert x into T[index] 
            return 
        end if 
        i ← i + 1 
    end while 
    Perform quotient filter splitting or resizing 
end procedure 
procedure Search(x) 
    i ← 0 
    while i < k do 
        index ← hi(x) 
        if x is in T[index] then 
            return True 
        end if 
        i ← i + 1 
    end while 
    return False 
end procedure 
 
procedure Delete(x) 
    i ← 0 
    while i < k do 
        index ← hi(x) 
        if x is in T[index] then 
            Remove x from T[index] 
            return 
        end if 
        i ← i + 1 
    end while 
    return False 
end procedure 

2.4. Morton Filter 

Bộ lọc Morton Filter (MF) (Breslow & Jayasena, 
2018) là một biến thể của bộ lọc Cuckoo với một số 
cải tiến đáng kể. MF sử dụng kỹ thuật nén dữ liệu, 
tách biệt đại diện dữ liệu logic và vật lý, cũng như 
ưu tiên một số bucket để tối ưu hóa hiệu suất và sử 
dụng bộ nhớ. MF nén các bucket và chỉ lưu trữ các 
mã băm khác rỗng, giúp giảm đáng kể số lần truy 
cập bộ nhớ cho mỗi hoạt động. MF sử dụng tập hợp 
MF với n bucket, mỗi bucket chứa nhiều slot. Hàm 
f(x) là mã băm của phần tử x, h1(x) và h2(x) ánh xạ 
x vào một vị trí bucket trong MF. f(x) được lưu tại 
vị trí do h1(x) hoặc h2(x) xác định. 

Thuật toán 4: Morton Filter 
procedure Initialize(m, n, k) 
    MF ← array of n buckets, each with m slots, all 
set to empty 
    h ← array of k hash functions 
end procedure 

procedure add(x) 
    i ← 0 
    while i < k do 
        index ← hi(x) 
        if MF[index] has an empty slot then 
            Insert x into MF[index] 
            return 
        end if 
        i ← i + 1 
    end while 
    Perform Morton Filter splitting or resizing 
end procedure 
procedure Search(x) 
    i ← 0 
    while i < k do 
        index ← hi(x) 
        if x is in MF[index] then 
            return True 
        end if 
        i ← i + 1 
    end while 
    return False 
end procedure 
procedure Delete(x) 
    i ← 0 
    while i < k do 
        index ← hi(x) 
        if x is in MF[index] then 
            Remove x from MF[index] 
            return 
        end if 
        i ← i + 1 
    end while 
    return False 
end procedure 

2.5. Vacuum Filter 

Bộ lọc Vacuum  (Wang et al., 2019) là một cấu 
trúc dữ liệu xác suất hiệu quả cho phép thêm, xóa và 
tìm kiếm các phần tử, tương tự như Bộ lọc Cuckoo 
nhưng hiệu quả hơn về không gian lưu trữ và thông 
lượng. Bộ lọc Vacuum sử dụng một bảng gồm m 
bucket, mỗi bucket có nhiều slot (thường là 4) để lưu 
trữ các mã băm f(x). Các mã băm này có thể được 
lưu trữ tại một trong hai vị trí được xác định bởi 
h1(x) = h(x) mod m và h2(x) = h1(x) ⊕ (h(f(x)) mod 
m). Khác với Bộ lọc Cuckoo, Bộ lọc Vacuum chia 
các bucket thành các chunk có kích thước bằng nhau 
L, với L = 2n và m là bội số của L. Khi thêm phần 
tử x, tính h1(x), h2(x), f(x) và tìm slot trống để lưu 
f(x). Nếu không có slot trống, di chuyển các mã băm 
khác để tạo chỗ trống. Khi tìm kiếm x, kiểm tra sự 
hiện diện của f(x) tại các vị trí xác định. Khi xóa x, 
tìm và loại bỏ f(x). Bộ lọc Vacuum đạt hiệu quả vượt 
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trội về không gian và thông lượng so với các bộ lọc 
Cuckoo, Bloom, Quotient và Morton. 
Thuật toán 5: Vacuum Filter  
procedure Initialize(m, n, k) 
    VF ← array of n buckets, each with m slots, all 
set to empty 
    h ← array of k hash functions 
end procedure 
 
procedure Add(x) 
    for i from 0 to k-1 do 
        index ← hi(x) 
        if VF[index] has an empty slot then 
            Insert x into VF[index] 
            return 
        end if 
    end for 
    ReorderOrResize() 
end procedure 
 
procedure Search(x) 
    for i from 0 to k-1 do 
        index ← hi(x) 
        if x is in VF[index] then 
            return True 
        end if 
    end for 
    return False 
end procedure 
 
procedure Delete(x) 
    for i from 0 to k-1 do 
        index ← hi(x) 
        if x is in VF[index] then 
            Remove x from VF[index] 
            return True 
        end if 
    end for 
    return False 
end procedure 

2.6. Apache Spark 

Apache Spark (Zaharia et al., 2010) là một 
framework xử lý dữ liệu quy mô lớn có thể thực hiện 
nhanh chóng việc xử lý tác vụ trên các tập dữ liệu 
lớn và cũng có thể phân tán trên nhiều máy tính. 
Spark tương thích với nhiều hệ thống tập tin phân 
tán như Hadoop HDFS. 

2.7. Các bộ lọc trong Apache Spark 
2.7.1. Bloom Filter trong Apache Spark  

Bloom Filter là một cấu trúc dữ liệu xác suất 
được sử dụng rộng rãi trong Apache Spark để kiểm 

tra xem một phần tử có phải là thành viên của một 
tập hợp hay không. Nó đặc biệt hữu ích để giảm kích 
thước tập dữ liệu trước khi thực hiện các hoạt động 
tốn kém như join. Trong Spark, Bloom Filter được 
triển khai bằng cách sử dụng một loạt các hàm băm 
ánh xạ các phần tử vào các vị trí trong một mảng bit, 
giảm đáng kể nhu cầu về bộ nhớ với chi phí là một 
tỷ lệ dương tính giả có thể quản lý được. Hình 1 và 
2 mô tả hàm Map() và Reduce() khi triển khai 
Bloom Filter trên Apache Spark. 

 
Hình 1. Hàm Map() khi triển khai Bloom Filter 

 
Hình 2.  Hàm Reduce() khi triển khai  

Bloom Filter 

2.7.2. Cuckoo Filter trong Apache Spark  

Cuckoo Filter mở rộng các khả năng của Bloom 
Filter bằng cách không chỉ cho phép thêm và truy 
vấn phần tử mà còn cho phép xóa các phần tử. Điều 
này làm cho Cuckoo Filter trở nên phù hợp với các 
tập dữ liệu trong Spark. Nó sử dụng một mảng 
bucket, trong đó mỗi bucket có thể chứa nhiều mục, 
cùng với hai hàm băm để xác định vị trí của mục. 
Hình 3 và 4 thể hiện kiến trúc của Cuckoo Filter 
trong Apache Spark. 

 
Hình 3. Hàm Map() khi triển khai  

Cuckoo Filter 
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Hình 4. Hàm Reduce() khi triển khai  

Cuckoo Filter 

2.7.3. Quitient Filter trong Apache Spark  

Quotient Filter là một biến thể của Bloom Filter, 
tuy nhiên nó sử dụng cách tiếp cận khác để cải thiện 
hiệu năng. Thay vì sử dụng một mảng bit như Bloom 
Filter, Quotient Filter lưu trữ các giá trị băm dưới 
dạng cặp thương số (quotient) và số dư (remainder). 
Điều này cho phép Quotient Filter nén dữ liệu hiệu 
quả hơn và giảm không gian lưu trữ so với Bloom 
Filter truyền thống. Trong Spark, Quotient Filter có 
thể được triển khai để tối ưu hóa việc lọc và truy vấn 
trên tập dữ liệu lớn. Việc áp dụng Quotient Filter 
giúp giảm đáng kể không gian lưu trữ và cải thiện 
thời gian xử lý. Hình 11 và 12 minh họa kiến trúc 
của Quotient 

  
Hình 5. Hàm Map() khi triển khai  

Quotient Filter 

 
Hình 6. Hàm Reduce() khi triển khai  

Quotient Filter 

2.7.4. Morton Filter trong Apache Spark  

Morton Filter là một biến thể mới hơn của các 
thuật toán lọc xác suất cung cấp cách tiếp cận tối ưu 
bằng cách kết hợp các kỹ thuật nén và tổ chức bucket 
để tối ưu hóa cả không gian lưu trữ và hiệu suất. Khi 

triển khai trong Apache Spark, Morton Filter giảm 
thiểu việc truy cập bộ nhớ trong quá trình truy vấn, 
làm cho nó phù hợp với các môi trường đòi hỏi cả 
hiệu suất cao và sử dụng bộ nhớ hiệu quả. Kiến trúc 
của Morton Filter trên Apache Spark dựa trên 
Cuckoo Filter nhưng được cải tiến đáng kể để tăng 
hiệu suất. Morton Filter sử dụng kỹ thuật nén và tổ 
chức dưới các bucket giúp tối ưu hóa không gian lưu 
trữ và giảm số lần truy cập bộ nhớ. Các phần tử trong 
Morton Filter được băm và lưu trữ trong các bucket, 
tương tự như Cuckoo Filter, nhưng với cách nén dữ 
liệu được cải thiện đáng kể. Nhờ vào các cải tiến 
này, Morton Filter có thể thực hiện các tác vụ tìm 
kiếm nhanh hơn và hiệu quả hơn trong môi trường 
xử lý phân tán của Spark 

2.7.5. Vacuum Filter trong Apache Spark  

Vacuum Filter là một cấu trúc dữ liệu xác suất 
mới được giới thiệu gần đây như một giải pháp thay 
thế cho Bloom Filter và Cuckoo Filter. Vacuum 
Filter kết hợp các kỹ thuật của cả hai bộ lọc này để 
đạt được hiệu quả tốt hơn về cả không gian lưu trữ 
và thời gian xử lý. Kiến trúc của Vacuum Filter trên 
Apache Spark dựa trên Bloom Filter nhưng với các 
cải tiến để tăng hiệu suất và giảm không gian lưu 
trữ. Vacuum Filter kết hợp các kỹ thuật từ cả Bloom 
Filter và Cuckoo Filter, cho phép chèn, xóa và truy 
vấn các phần tử một cách hiệu quả hơn. Trong 
Spark, Vacuum Filter được thiết kế để tận dụng tối 
đa khả năng xử lý song song và phân tán, giúp tối 
ưu hóa các truy vấn trên tập dữ liệu lớn. Những cải 
tiến này làm cho Vacuum Filter trở thành một lựa 
chọn tốt hơn cho các ứng dụng yêu cầu xử lý dữ liệu 
lớn với hiệu suất cao. Trong Spark, Vacuum Filter 
có thể được sử dụng để tối ưu hóa các truy vấn trên 
tập dữ liệu lớn. Nó sử dụng một bảng băm với cấu 
trúc đặc biệt cho phép chèn, xóa và truy vấn các 
phần tử một cách hiệu quả. Vacuum Filter cũng hỗ 
trợ xử lý song song và phân tán trên nhiều nút tính 
toán trong cụm Spark.  

3. THỰC NGHIỆM 
3.1. Môi trường và bộ dữ liệu 

Các thực nghiệm được tiến hành trên một cụm 7 
máy tính (1 master và 6 nút tính toán). Mỗi máy tính 
sử dụng hệ điều hành Ubuntu 20.04 LTS và được 
cấu hình với 4 vCPU, 32GB RAM và 70GB HDD. 
Môi trường được cài đặt các phần mềm sau: Java 
1.8, Hadoop 3.2.2 và Spark 3.2.0. Spark được cấu 
hình để chạy ở chế độ master với 6 executor, trong 
đó mỗi executor có 3 CPU và 30GB RAM. HDFS 
được cấu hình để lưu trữ dữ liệu đầu vào và đầu ra. 
Các tập dữ liệu được sử dụng để chạy thử nghiệm là 
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dữ liệu chuẩn được tạo bởi Purdue MapReduce 
Benchmarks Suite (Ahmad et al., 2012).  

Các thử nghiệm thực hiện trên hai môi trường 
khác nhau: (1) Môi trường local được thực hiện trên 
một máy tính duy nhất. Apache Spark được cài đặt 
và cấu hình để chạy trên chế độ local, tận dụng tài 
nguyên của máy đơn để xử lý dữ liệu; và (2) Môi 
trường cluster được thực hiện trên một cụm máy tính 
(cluster) gồm 6 nút tính toán. Apache Spark được 
cài đặt và cấu hình để chạy trên chế độ cluster, phân 
phối tính toán trên nhiều nút để xử lý song song dữ 
liệu. Việc thực hiện thực nghiệm trên cả hai môi 
trường local và cluster giúp đánh giá toàn diện hiệu 
năng của các thuật toán lọc trong các điều kiện khác 
nhau. Môi trường local cho phép kiểm tra khả năng 
hoạt động và so sánh trực tiếp giữa các thuật toán, 
trong khi môi trường cluster giúp đánh giá khả năng 
mở rộng và hiệu quả xử lý phân tán của chúng. 

Bảng 1. Bộ dữ liệu thực nghiệm 

Test Dataset L Dataset R 
Size Num_record Size Num_record 

1 2GB 5,366,662 2GB 2,681,966 
2 3GB 8,049,298 3GB 5,364,698 

Các tập dữ liệu đều được lưu trữ dưới dạng tệp 
văn bản thuần túy, mỗi dòng có nhiều hơn một 
trường được phân tách bằng dấu phẩy. Khóa kết nối 
là cột đầu tiên của cả hai tập dữ liệu. Số lượng bản 
ghi và kích thước của các tập dữ liệu được mô tả 
trong Bảng 1.  

 
Hình 7. So sánh chi phí lưu trữ (bit) 

Các thử nghiệm được thực hiện với sáu thuật 
toán bao gồm: Bloom Filter, Cuckoo Filter, Morton 
Filter, Quotient Filter và Vacuum Filter. Trong thử 
nghiệm, hai bước được thực hiện để đánh giá độ 
chính xác của các thuật toán: Đầu tiên áp dụng phép 
join không có bộ lọc (khoảng cách bằng 0) lên hai 
tập dữ liệu và so sánh kết quả thu được; sau đó, join 
có áp dụng các bộ lọc khác nhau lên cùng hai tập dữ 
liệu đó. Việc so sánh kết quả của hai bước này giúp 
đảm bảo các thuật toán lọc hoạt động chính xác và 
cho phép đánh giá hiệu năng của chúng. 

3.2. Kết quả 

Bảng 2 trình bày các công thức tính toán số bit 
cần thiết để lưu trữ một phần tử trong các bộ lọc 
khác nhau và kết quả thực nghiệm so sánh chi phí 
lưu trữ Hình 7 minh họa hiệu suất của một số bộ lọc 
xác suất, biểu thị chi phí lưu trữ của chúng theo bit 
trên mỗi phần tử trên một dải tỷ lệ dương tính giả từ 
0,1% đến 1%. Ban đầu, Bloom Filter yêu cầu 14,35 
bit trên phần tử ở mức tỷ lệ dương tính giả 0,1%, 
giảm xuống 9,57 bit khi tỷ lệ này tăng lên 1%. Sự 
giảm dần này minh họa hiệu quả không gian của 
Bloom Filter ở các ngưỡng lỗi cao hơn. Cuckoo 
Filter khởi đầu với một lợi thế nhẹ, yêu cầu 13,65 
bit cho mỗi phần tử và giảm dần xuống còn 10,15 
bit khi tỷ lệ dương tính giả đạt 1%. Đường cong của 
nó gần như ổn định, thể hiện sự cải thiện khá khiêm 
tốn về hiệu quả lưu trữ khi chấp nhận tỷ lệ sai sót 
cao hơn. 

Quotient Filter nổi bật với chỉ 12,73 bit ban đầu 
và giảm xuống còn 9,23 bit khi tỷ lệ dương tính giả 
đạt 1%. Nó duy trì vị trí dẫn đầu về hiệu quả lưu trữ 
trong toàn bộ phạm vi khảo sát, khẳng định sự phù 
hợp của nó cho các ứng dụng nhạy cảm với không 
gian lưu trữ. Đường cong của Morton Filter bắt đầu 
ở 13,12 bit và kết thúc ở 9,63 bit, cho thấy một sự 
cải thiện ổn định nhưng khiêm tốn trong việc sử 
dụng không gian khi cho phép tỷ lệ lỗi cao hơn. 
Trong khi đó, Vacuum Filter khởi đầu ở mức 13,72 
bit và kết thúc với 10,23 bit tại ngưỡng dương tính 
giả 1%, thể hiện sự thay đổi ít nhất. Quỹ đạo phẳng 
của nó cho thấy sự kém hiệu quả hơn trong việc tiết 
kiệm không gian khi tỷ lệ dương tính giả tăng lên. 

Bảng 2. Công thức tính bit trên phần tử (Fan et 
al., 2014; Geil et al., 2018; Breslow & 
Jayasena, 2018; Burdakov et al., 2019; 
Wang et al., 2019)  

Filters Số bit trên phần tử 

Bloom Filter 1.44 𝑙𝑙𝑙𝑙𝑙𝑙2(
1
𝜀𝜀

) 

Cuckoo Filter (𝑙𝑙𝑙𝑙𝑙𝑙2 �
1
𝜀𝜀
� + 3)/𝛼𝛼 

Quotient Filter (𝑙𝑙𝑙𝑙𝑙𝑙2 �
1
𝜀𝜀
� + 2.215)/𝛼𝛼 

Vacuum Filter (𝑙𝑙𝑙𝑙𝑙𝑙2 �
1
𝜀𝜀
� + 3.07)/𝛼𝛼 

Morton Filter (𝑙𝑙𝑙𝑙𝑙𝑙2 �
1
𝜀𝜀
� + 2.5)/𝛼𝛼 

So sánh thời gian thực thi trong các Hình 8 và 9, 
hiệu suất của các bộ lọc khác nhau trên ba hoạt động 
chính là chèn, tìm kiếm và xóa được đánh giá bằng 
cách sử dụng hai tập dữ liệu có kích thước khác 
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nhau. Bloom Filter cho thấy thời gian thực thi cân 
bằng cho các hoạt động chèn và tìm kiếm, lần lượt 
vào khoảng 8,97 giây và 8,78 giây, không hỗ trợ 
xóa. Sự cân bằng này biến nó thành một lựa chọn 
đáng tin cậy cho các tập dữ liệu tĩnh không yêu cầu 
xóa. Cuckoo Filter có hiệu suất chèn gần tương đồng 
với Bloom Filter, lần lượt là 9,17 giây và 8,24 giây. 
Đáng chú ý, thời gian xóa của Cuckoo Filter thấp 
nhất ở mức 8,02 giây, cho thấy Cuckoo Filter phù 
hợp hơn cho môi trường có các bản ghi thường 
xuyên bị xóa. Quotient Filter, mặc dù có thời gian 
chèn cao nhất là 2,44 giây, nhưng với thời gian tìm 
kiếm thấp nhất ở mức 2,57 giây. Thời gian xóa cũng 
tương đối thấp ở mức 2,15 giây. Thời gian tìm kiếm 
của nó có thể phù hợp cho các ứng dụng ưu tiên hoạt 
động đọc và chậm hơn cho thao tác cập nhật. Morton 
Filter có hiệu suất khác biệt đáng kể với thời gian 
chèn tương đối dài là 6,45 giây nhưng có thời gian 
tìm kiếm vượt trội là 3,07 giây và thời gian xóa là 
2,80 giây. Những đặc điểm này cho thấy Morton 
Filter có thể được ưu tiên trong các kịch bản mà tìm 
kiếm nhanh quan trọng hơn chèn. Tuy nhiên, 
Vacuum Filter có thời gian chèn tăng cao lên 11,73 
giây, cao hơn đáng kể so với các bộ lọc khác. Thời 
gian tìm kiếm và xóa của nó lần lượt là 2,71 giây và 
2,58 giây. Thời gian chèn cao có thể là một bất lợi 
đáng kể cho các ứng dụng yêu cầu cập nhật dữ liệu 
thường xuyên. 

Nhìn chung, khi xem xét thời gian thực thi cho 
chèn, tìm kiếm và xóa, việc lựa chọn bộ lọc có thể 
phụ thuộc vào các yêu cầu cụ thể của trường hợp sử 
dụng. Đối với các tập dữ liệu tĩnh hoặc khi tốc độ 
chèn không phải là yếu tố quan trọng, Vacuum Filter 
có thể là một lựa chọn khả thi do thời gian tìm kiếm 
và xóa thấp của nó. Đối với môi trường có các thao 
tác cập nhật thường xuyên, hiệu suất cân bằng và 
thời gian xóa thấp của Cuckoo Filter có thể phù hợp 
hơn. Ngược lại, khi ưu tiên tốc độ đọc, các bộ lọc 
Quotient và Morton cung cấp những lợi ích thuyết 
phục mặc dù thời gian chèn chậm hơn. 

So sánh thời gian thực thi trong cụm Spark Bảng 
3 và Hình 10 cho thấy kết quả thực nghiệm so sánh 
thời gian thực thi của các thuật toán lọc trong môi 
trường cụm Spark đã làm nổi bật những ưu điểm nổi 
bật của xử lý dữ liệu song song và phân tán. Spark 
với khả năng thực hiện tính toán phân tán trên nhiều 
nút, cho phép các thuật toán như Bloom Filter, 
Cuckoo Filter và đặc biệt là Quotient Filter thể hiện 
tốc độ xử lý nhanh hơn khi xử lý trên các bộ  
dữ liệu lớn. 

 
Hình 8. Tổng thời gian thực thi của các bộ lọc 

với 3GB dữ liệu (đơn vị: giây) 

Quotient Filter nổi bật với thời gian chèn chỉ 
2,34 giây và thời gian tìm kiếm là 2,57 giây, đã thể 
hiện sự vượt trội so với Bloom Filter (8,97 giây cho 
chèn, 8,77 giây cho tìm kiếm) và Cuckoo Filter 
(9,12 giây cho chèn, 8,96 giây cho tìm kiếm). Điều 
này thể hiện khả năng tận dụng sức mạnh tính toán 
song song của Spark, cho phép Quotient Filter xử lý 
nhanh chóng và hiệu quả các bộ dữ liệu lớn, vượt xa 
hiệu suất của việc chạy tuần tự trên môi trường máy 
tính đơn. 

 
Hình 9. Tổng thời gian thực thi của các bộ lọc 

với 5GB dữ liệu (đơn vị: giây) 

 
Hình 10. So sánh thời gian xử lý trên môi 

trường cục bộ và phân tán trên Spark 

Hình 10 cho thấy sự cải thiện đáng kể về hiệu 
năng của các thuật toán khi chuyển từ môi trường 
local sang cluster, đặc biệt là với Quotient Filter. Kết 
quả cho thấy Quotient Filter đạt được mức cải thiện 
hơn 50% khi chạy trên cluster so với local, vượt trội 
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hơn hẳn so với các thuật toán khác. Điều này có thể 
được giải thích bởi kiến trúc phù hợp và dễ dàng 
triển khai với xử lý song song, Quotient Filter có thể 
tận dụng hiệu quả các tài nguyên phần cứng và băng 
thông mạng của cluster, dẫn đến sự cải thiện đáng 
kể về hiệu năng xử lý. 

Bảng 3. Tổng thời gian thực hiện bộ lọc với 2gb 
dữ liệu (đơn vị: giây) 

 
Local Spark cluster 

Insertion 
time 

Search 
time 

Insertion 
time 

Search 
time 

Bloom 
Filter 8,97 8,77 13,23 7,46 

Cuckoo 
Filter 9,12 8,96 14,51 6,04 

Quotient 
Filter 2,34 2,57 1,04 1,18 

Morton 
Filter 11,24 2,87 15,14 1,22 

Vacuum 
Filter 7,94 2,65 3,04 1,28 

Đáng lưu ý là khi được triển khai trên Spark, tất 
cả các thuật toán này đều hưởng lợi từ tính song 
song dữ liệu và xử lý song song trên nhiều nút tính 
toán. Tuy nhiên, mức độ cải thiện hiệu suất khác 
nhau tùy thuộc vào đặc điểm và điểm mạnh của từng 
thuật toán. Quotient Filter với những tối ưu hóa về 
không gian lưu trữ và thời gian thực thi đã chứng 
minh là rất phù hợp và hiệu quả khi kết hợp với sức 
mạnh của Spark. Kết quả cho thấy việc tận dụng xử 
lý song song và phân tán trên các nền tảng như Spark 
mang lại những lợi ích đáng kể cho các ứng dụng xử 
lý dữ liệu quy mô lớn. Nó không chỉ giảm đáng kể 
thời gian tính toán mà còn mở ra khả năng mở rộng 
và xử lý các bộ dữ liệu có kích thước lớn. Phương 
pháp tiếp cận này là một xu hướng đầy hứa hẹn và 
ngày càng phổ biến trong lĩnh vực khoa học dữ liệu 
và xử lý thông tin hiện đại. 

Kết quả của nghiên cứu này nhìn chung phù hợp 
với những công trình liên quan trước đây. Pandey et 
al. (2017) cũng chỉ ra rằng Quotient Filter có hiệu 
quả vượt trội về không gian lưu trữ và thời gian thực 
thi khi so sánh với Bloom Filter và Cuckoo Filter. 

Tương tự, Agarwal et al.  (2013) nhận thấy sự cải 
thiện đáng kể về hiệu năng của các bộ lọc xác suất, 
đặc biệt là Quotient Filter, khi triển khai trên Apache 
Spark. Những kết quả này củng cố thêm tính đúng 
đắn và ý nghĩa của các phát hiện trong nghiên cứu. 
Tuy nhiên, việc có thêm nhiều nghiên cứu với các 
tập dữ liệu và kịch bản đa dạng hơn là cần thiết để 
đánh giá toàn diện hiệu năng của các thuật toán lọc, 
đặc biệt là với sự xuất hiện của các biến thể mới như 
Morton Filter và Vacuum Filter. 

4. KẾT LUẬN 

Trong nghiên cứu này, các thuật toán lọc hiệu 
quả trong môi trường xử lý dữ liệu lớn như Bloom 
Filter, Cuckoo Filter, Quotient Filter, Morton Filter 
và Vacuum Filter được trình bày chi tiết và đánh giá 
hiệu suất. Kết quả thực nghiệm cho thấy Quotient 
Filter là thuật toán hiệu quả nhất về mặt lưu trữ và 
cân bằng tốt giữa các tiêu chí hiệu năng. Quotient 
Filter sử dụng ít không gian lưu trữ nhất cho mỗi 
phần tử và đạt tốc độ chèn, tìm kiếm, xóa ở mức cao 
và ổn định. Bên cạnh đó, các thuật toán khác cũng 
thể hiện những ưu điểm riêng phù hợp với các yêu 
cầu cụ thể. Bloom Filter có tốc độ tốt, thích hợp cho 
các ứng dụng yêu cầu chèn và tìm kiếm nhanh trên 
dữ liệu tĩnh. Morton Filter nổi trội về tốc độ tìm 
kiếm nhưng chậm hơn khi chèn dữ liệu mới, phù hợp 
khi ưu tiên tốc độ đọc. Vacuum Filter, mặc dù có 
thời gian chèn chậm nhất, nhưng cung cấp khả năng 
tìm kiếm và xóa nhanh, là một lựa chọn tốt cho các 
trường hợp yêu cầu tìm kiếm và xóa nhanh mà 
không cần chèn dữ liệu thường xuyên. Khi được 
triển khai trên nền tảng Spark với khả năng xử lý 
song song và phân tán, tốc độ xử lý của các thuật 
toán được cải thiện đáng kể. Đặc biệt, Quotient 
Filter đạt mức cải thiện vượt bậc, hơn 50% khi chạy 
trên cluster so với môi trường local. Điều này mở ra 
triển vọng ứng dụng hiệu quả các thuật toán lọc, đặc 
biệt là Quotient Filter, để xử lý dữ liệu lớn và  
phân tán. 
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